胡亞勤
摘要本文提出利用形象化教學(xué)解決高中數(shù)學(xué)的抽象性問題的幾種辦法,使學(xué)生更容易對數(shù)學(xué)理論的理解與吸收。
關(guān)鍵詞高中數(shù)學(xué)教學(xué)形象化抽象性
中圖分類號(hào):G633.6文獻(xiàn)標(biāo)識(shí)碼:A
1 引言
數(shù)學(xué)學(xué)科的主要研究對象是空間形式和數(shù)量關(guān)系,其最大的特點(diǎn)就是高度抽象性,所包含的概念、定理和一般規(guī)律性質(zhì)都具有極強(qiáng)的概括性。而其抽象性,又給學(xué)生難以理解和枯燥的感覺。眾所周知,形象和抽象是對立統(tǒng)一的兩面,人們對事物的認(rèn)識(shí)首先都是由形象化開始的,只有把握其最初的形象化,才能理解其抽象的部分。對數(shù)學(xué)學(xué)習(xí)也是如此,必須進(jìn)行想象化教學(xué)才能促進(jìn)學(xué)生對數(shù)學(xué)理論的理解,提高學(xué)習(xí)興趣。
在傳統(tǒng)的數(shù)學(xué)教學(xué)中,教師往往直接向?qū)W生灌輸抽象的數(shù)學(xué)結(jié)論,而忽視了對結(jié)論的形象化,許多知名教學(xué)家和心理學(xué)家都認(rèn)為形象思維能讓人對抽象理論在理解的基礎(chǔ)上形成更深的記憶,加強(qiáng)對理論的掌握。因此對抽象的數(shù)學(xué)應(yīng)該采取辦法使之形象化,然而如何將抽象的數(shù)學(xué)變得形象化,也是教學(xué)的難點(diǎn),不但要求老師付出更多的努力,而且需要有合適的方案。
2 數(shù)學(xué)形象化教學(xué)的幾種方法
形象化教學(xué)的實(shí)質(zhì)是將抽象理論和概念通過直觀模型、日常實(shí)例、情境設(shè)置等方法進(jìn)行具體化,抓住其主要的屬性和本質(zhì),促進(jìn)理解。在數(shù)學(xué)教學(xué)中可以采用以下方法使數(shù)學(xué)理論形象化。
(1)數(shù)形結(jié)合:數(shù)形結(jié)合是最簡單實(shí)用的想象化方法,主要途徑是通過幾何圖形將抽象理論的本質(zhì)反應(yīng)出來,使其直觀化,讓人容易理解。運(yùn)用數(shù)形結(jié)合講述基本理論和例題使往往可以起到事半功倍的效果,比如在數(shù)學(xué)不等式和集合的教學(xué)中,可以利用數(shù)軸和韋恩圖來表示數(shù)值的取值范圍以及各個(gè)子集之間的關(guān)系等,而解決函數(shù)解的個(gè)數(shù)時(shí),利用圖形解題,往往能有更高的效率。
(2)合理應(yīng)用模型:模型教學(xué)是最直觀的方法,往往能清晰簡練的闡明問題的基本特性,比如在講述圓椎曲線的時(shí)候,可以巧妙對圓進(jìn)行變化,使之變成橢圓、雙曲線和拋物線,使學(xué)生明白它們的演變與區(qū)別;有時(shí)候各科模型還有通用性,比如數(shù)學(xué)中的正弦波和余弦波和物理中的橫波、交流電波的具有很多相似點(diǎn)。
(3)定理和概念形象化:數(shù)學(xué)概念和定理比較枯燥和抽象,但是往往都是解題的關(guān)鍵,將其形象化,往往能吸引學(xué)生的注意力和興趣。比如介紹橢圓和性質(zhì)的時(shí)候,橢圓上任意點(diǎn)到兩焦點(diǎn)的距離之和是長軸的兩倍,而任意點(diǎn)到準(zhǔn)線的距離與到焦點(diǎn)的距離為離心率,教師在黑板上可以根據(jù)這兩個(gè)定義,制作儀器繪畫橢圓,再根據(jù)這兩個(gè)定義講解相關(guān)例題,能加深學(xué)生對定義的理解。
(4)巧妙利用日常事例:日常實(shí)例與數(shù)學(xué)相結(jié)合時(shí),不但使學(xué)生加深對理論的理解,還會(huì)讓其感覺到數(shù)學(xué)的實(shí)用性,激發(fā)學(xué)習(xí)的興趣,實(shí)際上許多數(shù)學(xué)定理都是在日事例中發(fā)現(xiàn)的。在學(xué)習(xí)概率和排列組合的時(shí)候,可以讓學(xué)生計(jì)算買彩票的中獎(jiǎng)率以及其他的應(yīng)用實(shí)例。
(5)通俗化數(shù)學(xué)表述:數(shù)學(xué)學(xué)科中一些概念的表述往往會(huì)讓學(xué)生感覺到空洞和困惑,對專業(yè)的數(shù)學(xué)術(shù)語無法理解,而數(shù)學(xué)表述又和教師的教和學(xué)生的學(xué)無法分開,需要通過這些表述進(jìn)行相互交流。鑒于此種情況,教師在講授時(shí),對抽象的表述可以適當(dāng)?shù)牟鸱殖蓭锥?抓住每一個(gè)特點(diǎn),逐個(gè)用最常見的例子和表述進(jìn)行轉(zhuǎn)換成學(xué)生易于接受的教學(xué)語言,讓學(xué)生明白這些抽象表述的由來。
(6)抽象問題具體化:學(xué)生對高中數(shù)學(xué)中的抽象函數(shù)和化學(xué)符號(hào)等往往不能舉一反三,有些題目中往往只把其中的參數(shù)改成另外一種形式,學(xué)生就無法下手,對于這些教抽象的符號(hào)和公式,教師可以在教學(xué)中將其具體化,讓學(xué)生分清每一符號(hào)和公式的意義。
3 形象化教學(xué)的效果
首先高中數(shù)學(xué)采用形象化教學(xué)有利于學(xué)生加強(qiáng)對課堂上講的概念、定理、例題等知識(shí)的理解,不只是停留在死記硬背的基礎(chǔ)上,因?yàn)橄鄬τ诔橄蟮氖挛?形象的總能給人更深的記憶;其次,節(jié)約了教師的課堂時(shí)間,提高了教學(xué)效率,形象化教學(xué)往往能讓學(xué)生自己學(xué)會(huì)舉一反三,對于有些類似問題,教師就不用多次講授,這樣還可以留給更多的時(shí)間讓學(xué)生自己學(xué)習(xí)和思考,而避免一味的重復(fù)灌輸;再次,可以激發(fā)學(xué)生的學(xué)習(xí)興趣,生動(dòng)形象的教學(xué)往往會(huì)吸引學(xué)生的注意和好奇心,當(dāng)形象教學(xué)聯(lián)系實(shí)際時(shí),總會(huì)促進(jìn)學(xué)生對知識(shí)不斷探索;最后形象化教學(xué)有利于人才的培養(yǎng),促進(jìn)學(xué)生素質(zhì)的發(fā)展。
4 總結(jié)和展望
高中數(shù)學(xué)形象化教學(xué)可以克服數(shù)學(xué)的抽象,讓學(xué)生更容易接受和掌握數(shù)學(xué)知識(shí),在素質(zhì)化教育的今天,形象化教學(xué)還可以讓學(xué)生對數(shù)學(xué)產(chǎn)生興趣,激發(fā)自我學(xué)習(xí)和實(shí)踐運(yùn)用,不但提高數(shù)學(xué)教學(xué)效果,還可以培養(yǎng)學(xué)生能力,是值得學(xué)習(xí)和發(fā)展的教學(xué)方式。