国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

L-保序算子空間的ω-緊性

2009-07-05 14:21韓紅霞孟廣武
關鍵詞:紅霞聊城運城

韓紅霞,孟廣武

(1.運城學院應用數(shù)學系,山西運城 044000;2.聊城大學數(shù)學科學學院,山東聊城 252059)

L-保序算子空間的ω-緊性

韓紅霞1,孟廣武2

(1.運城學院應用數(shù)學系,山西運城 044000;2.聊城大學數(shù)學科學學院,山東聊城 252059)

研究了L-保序算子空間的ω-緊性.借助于Hα-ω-開覆蓋,定義了L-保序算子空間的ω-緊性,證明了ω-緊集和ω-閉集之交是ω-緊的,ω-緊性被連續(xù)的廣義Zadeh型函數(shù)所保持,ω-緊性是L-好的推廣,Tychonoff乘積定理成立.此外,給出了ω-緊性的網(wǎng)式刻畫.

L-保序算子空間;Hα-ω-開覆蓋;ω-緊性

1 預備知識

在本文中,L表示F格,1與0分別表示其最大元與最小元.1X與0X分別表示LX的最大元與最小元.對a∈L,β(a)表示a的最大極小集,β?(a)=β(a)∩M(L).對A∈LX,β(A)表示A的最大極小集,β?(A)=β(A)∩M?(LX).記A(a)={x∈X|a∈β(A(x))}.其余未說明的概念和記號見文[1].

2 ω-緊性

3 Tychonoff乘積定理

4 ω-緊性的網(wǎng)式刻畫

[1]陳水利,董長清.L-fuzzy保序算子空間[J].模糊系統(tǒng)與數(shù)學,2002,16(專輯):36-41.

[2]黃朝霞.拓撲生成的Fuzzy保序算子空間的ω-分解定理及ω-連通性理論[J].模糊系統(tǒng)與數(shù)學,2004,18(專輯):180-183.

[3]Liu Yingming,Luo Maokang.Separations in lattice-valued induced spaces[J].Fuzzy Sets and System s,1990, 36:55-66.

[4]王戈平.完全分配格上的弱輔助序與廣義序同態(tài)[J].數(shù)學季刊,1988,3(4):76-83.

[5]He Wei.Generalized Zadeh function[J].Fuzzy Sets and System s,1998,97:381-386.

[6]ShiFugui,Zheng Chongyou.O-convergence of fuzzy netsand itsapp lications[J].Fuzzy Setsand System s,2003, 140:499-507.

ω-com pactness in L-order-preserving operator spaces

HAN Hong-xia1,MENG Guang-wu2

(1.Department of App lied Mathematics,Yuncheng College,Yuncheng,044000,China; 2.School of Mathem atics Science,Liaocheng University,Liaocheng,252059,China)

Theω-com pactness of L-order-preserving operator spaces is discussed.By m eans of Hα-ω-open cover,the notion ofω-com pactness of L-order-preserving operator spaces is introduced.It is p roved that the intersection of aω-com pact L-set and a closed L-set isω-com pact,thatω-com pactness is p reserved by continuously generalized Zadeh functions,thatω-com pactness is an L-good extension,and that the Tychonoff Theorem forω-com pactness is true.Moreover,ω-com pactness can also be characterized by nets.

L-order-preserving operator spaces,Hα-ω-open cover,ω-com pactness

O189

A

1008-5513(2009)02-0390-06

2007-07-10.

山東省自然科學基金(Y 2003A 01).

韓紅霞(1980-),碩士,講師,研究方向:模糊拓撲學.

2000M SC:54A 40

猜你喜歡
紅霞聊城運城
請你幫個忙
運城面粉、運城蘋果、運城蔬菜 “三個運城農(nóng)業(yè)品牌”打造運城新名片
點贊!李克強總理山西運城趕年集
運城清廉地圖
山西運城:冬日鹽湖色彩斑斕
聊城高新區(qū)多措并舉保障貧困戶“居住無憂”
聊城,宛在水中央
聊城 因水而生 有水則靈
新動能,新聊城
“光的直線傳播”“光的反射”練習
扎赉特旗| 桐庐县| 宁安市| 仙居县| 玉环县| 四平市| 青神县| 太仆寺旗| 富民县| 岳阳市| 临潭县| 肃宁县| 弋阳县| 沾益县| 赞皇县| 嵊州市| 宁都县| 四平市| 凌源市| 太仆寺旗| 洪洞县| 曲沃县| 长海县| 朝阳县| 同仁县| 富宁县| 桂林市| 平和县| 黄陵县| 抚州市| 无锡市| 黔东| 嘉鱼县| 阿拉善右旗| 北宁市| 绥阳县| 崇仁县| 从江县| 简阳市| 剑阁县| 永宁县|