王小燕,史道華
(1.福建醫(yī)科大學(xué)??偱R床醫(yī)學(xué)院,福州市 350025;2.南京軍區(qū)福州總醫(yī)院藥學(xué)科,福州市 350025)
卡馬西平是臨床上常用的一線抗癲癇藥物,應(yīng)用廣泛。但因治療窗口較窄和個(gè)體差異性,卡馬西平給藥劑量常常難以預(yù)測、把握。研究表明,基因多態(tài)性可導(dǎo)致藥物療效差異[1],是影響給藥劑量確定的重要因素之一。
藥物基因組學(xué)(Pharmacogenomics)主要研究與藥物療效及不良反應(yīng)相關(guān)的基因多態(tài)性,指導(dǎo)臨床開出“基因合適”的處方,使患者得到最佳治療效果,從而達(dá)到真正“個(gè)體化用藥”的目的[2]??R西平的療效與作用靶標(biāo)、轉(zhuǎn)運(yùn)體、代謝酶、人類白細(xì)胞抗原的基因多態(tài)性有關(guān)[3]。本文著重就卡馬西平藥物基因組學(xué)研究進(jìn)展綜述如下。
卡馬西平主要作用于Na+通道,能夠抑制癲癇灶及其周圍神經(jīng)元放電。Na+通道由1個(gè)α亞基和多個(gè)β亞基構(gòu)成。α亞基作為主體形成通道孔,由4個(gè)高度同源性的跨膜結(jié)構(gòu)域(Ⅰ~Ⅳ)組成,每個(gè)結(jié)構(gòu)域含有6個(gè)α螺旋跨膜區(qū)(S1~S6)。其中,S4區(qū)含5~8個(gè)帶正電荷的氨基酸殘基,稱為“電壓感受區(qū)”,當(dāng)膜電位發(fā)生變化時(shí),S4螺旋構(gòu)型即發(fā)生變化。Na+通道基因SCN1A、SCN2A分別編碼電壓門控Na+通道的α1亞基和α2亞基,其基因多態(tài)性與卡馬西平療效有關(guān)[4]。
Tate SK等[5]在425例歐洲籍癲癇患者中發(fā)現(xiàn)Na+通道上SCN1A(rs3812718)G突變?yōu)锳與卡馬西平的給藥劑量有關(guān)。此基因突變頻率為0.45,位于靠近外顯子5的高度保守部位,影響外顯子5的表達(dá)。因外顯子5編碼結(jié)構(gòu)域Ⅰ中的S4區(qū)域,此變異可能通過影響電壓感受區(qū),從而影響藥物效應(yīng)[3]。這一基因多態(tài)性與給藥劑量的關(guān)系頗受爭議。有研究[6,7]表明,AA基因型患者卡馬西平每日給藥劑量顯著高于GG基因型患者(1313 mg vs.1083 mg)。然而,Zimprich等[8]對369例澳大利亞患者進(jìn)行研究,結(jié)果并未發(fā)現(xiàn)卡馬西平劑量與此基因型具有明顯的關(guān)聯(lián)性。Lakhan等[4]對496例北印度人SCN2A(rs17183814)進(jìn)行研究,表明G突變?yōu)锳與癲癇患者耐藥有關(guān)。Sill等[9]對400例蘇格蘭患者研究,也發(fā)現(xiàn)了此相關(guān)性。但Makmor-Bakry等[10]研究卻表明,此基因多態(tài)性與卡馬西平的維持劑量無關(guān)[8]。
藥物轉(zhuǎn)運(yùn)體是能與特定的藥物結(jié)合,并將其轉(zhuǎn)運(yùn)出細(xì)胞的一類蛋白,包括ATP結(jié)合盒式蛋白(ATP binding cassette protein,ABC)家族轉(zhuǎn)運(yùn)體,如P-糖蛋白(P-glycoprotein,P-gp)、多藥耐藥相關(guān)蛋白(multidrug resistance-associated protein,MRP)和Ras超家族成員,如RLIP 76等。在難治性癲癇患者中,大腦血腦屏障上藥物轉(zhuǎn)運(yùn)體高度表達(dá),藥物外排增加,阻止了藥物進(jìn)入中樞,導(dǎo)致卡馬西平靶濃度降低[11],但此現(xiàn)象不能完全解釋卡馬西平療效的個(gè)體差異性。
P-gp是一種跨膜糖蛋白,由MDR1基因編碼,在肝、腎、胎盤、腸、血腦屏障、腦脊液屏障等組織或器官中表達(dá)[12,13]。Nishimura等[14]研究顯示,P-gp可導(dǎo)致海人酸(kainic acid)誘導(dǎo)的癲癇模型小鼠中樞內(nèi)卡馬西平濃度降低。Volk等[15]發(fā)現(xiàn),耐藥性癲癇小鼠與非耐藥癲癇小鼠相比,血腦屏障血管內(nèi)皮細(xì)胞上P-gp過度表達(dá)。
P-gp 26號(hào)外顯子3435位點(diǎn)的C突變?yōu)門可導(dǎo)致P-gp表達(dá)下降[16]。Siddiqui等[17]提出,英國人群P-gp 3435位的CC基因型可能與癲癇耐藥有關(guān)。有學(xué)者分別在北印度和土耳其人群中重復(fù)類似研究,未能得出MDR13435位基因多態(tài)性與癲癇耐藥的關(guān)系[18,19]。而Seo等[20]卻發(fā)現(xiàn)210例日本癲癇患者TT基因型與癲癇耐藥相關(guān)。此外,12號(hào)外顯子1236 C突變?yōu)門、21號(hào)外顯子2677 G突變?yōu)門/A與3435 C突變?yōu)門,存在強(qiáng)烈的連鎖不平衡關(guān)系[21]。
MRP為有機(jī)陰離子轉(zhuǎn)運(yùn)體,在肝、腎、腸、胎盤、腦血腦屏障等組織或器官中表達(dá)[22]。Schinke等[23]研究表明,MRP和P-gp在底物特異性方面有交叉,許多藥物同時(shí)是這2個(gè)轉(zhuǎn)運(yùn)體的底物。大鼠應(yīng)用MRP抑制劑后,其腦內(nèi)卡馬西平血藥濃度顯著增加[24]。Belgley等[25]研究顯示,MRP 2與P-gp表達(dá)產(chǎn)物分布位置一致,均在血腦屏障上的血管內(nèi)皮細(xì)胞腔面表達(dá),而MRP 1、MRP 3、MRP 5則在基底膜外側(cè)表達(dá)[13],因此,只有MRP 2可能對藥物進(jìn)入中樞有影響。
Ito等[26]發(fā)現(xiàn),MRP 2有6個(gè)突變位點(diǎn)。5’端非翻譯區(qū)的24位C突變?yōu)門(突變率為0.18),可能導(dǎo)致MRP 2表達(dá)量及活性的上調(diào)[27]。Ufer等[28]等發(fā)現(xiàn),高加索難治性癲癇患者此突變率顯著上調(diào),還可能與ABCB 1代償性上調(diào)有關(guān)[29]。Meyer等[30]指出,1249位G突變?yōu)锳可導(dǎo)致417位纈氨酸變?yōu)楫惲涟彼幔c妊娠婦女胎盤MRP 2表達(dá)量下降有關(guān)(突變率為0.125~0.22)[27]。而kim[31]等研究發(fā)現(xiàn),韓國人此基因多態(tài)性與癲癇耐藥無關(guān)聯(lián)。
RLIP 76為Ral結(jié)合蛋白,非ABC家族成員,分子量為76 kd,位于常染色體18pl1.3上,含有11個(gè)外顯子和9個(gè)內(nèi)含子。主要作用是調(diào)節(jié)細(xì)胞的內(nèi)攝、移動(dòng)、內(nèi)吞作用。Awasthi等[32]認(rèn)為,RLIP 76蛋白在大腦血腦屏障上內(nèi)皮細(xì)胞膜管腔表面表達(dá)。在已敲除RLIP 76蛋白的大鼠中注射卡馬西平,可出現(xiàn)嚴(yán)重的神經(jīng)毒性。此外,RLIP 76很少在正常大腦組織實(shí)質(zhì)細(xì)胞或血管內(nèi)表達(dá),但在癲癇患者的血管內(nèi)皮細(xì)胞內(nèi)卻顯著大量表達(dá)[32]。然而有學(xué)者[33,34]研究表明,RLIP 76的6種基因多態(tài)性(rs1979368、rs1561998、rs2028660、rs1813100、rs329007、rs167897,突變頻率分別為 0.489、0.533、0.522、0.534、0.398、0.021)與中樞卡馬西平血藥濃度并無關(guān)聯(lián)。
卡馬西平的體內(nèi)代謝復(fù)雜,經(jīng)環(huán)氧化物水解酶(microsomal epoxide hydrolase,mEH)、細(xì)胞色素 P450(CYP 450)中的CYP3A4、CYP3A5及尿苷二磷酸葡萄糖醛酸轉(zhuǎn)移酶(uridine 5’-diphosphate-glucuronosyltransferases,UGT)中的 UGT2B7等酶代謝??R西平先經(jīng)CYP3A4代謝成具有活性的卡馬西平環(huán)氧化物,再通過微粒體環(huán)氧化物水解酶轉(zhuǎn)化為無活性的卡馬西平二元醇或經(jīng)UGT2B7轉(zhuǎn)化為葡糖醛酸化合物,最終以游離或結(jié)合的形式隨尿液排出。
CYP3A4是人類肝臟及腸道中一種主要的CYP 450酶,約占成人肝臟CYP 450酶總量的25%?,F(xiàn)已發(fā)現(xiàn)CYP3A4變體種類近20種,且種族差異性大。Makmor-Bakry等[10]研究發(fā)現(xiàn),71例蘇格蘭癲癇患者,CYP3A4基因多態(tài)性與卡馬西平給藥劑量無關(guān)。微粒體環(huán)氧化物水解酶是一種重要的生物轉(zhuǎn)化的Ⅱ相代謝酶,該酶定位于人類染色體1q42.1,由EPHX 1基因編碼,具有高度保守性,可催化多種環(huán)氧化中間產(chǎn)物水解為更易溶于水的反式二氫二醇。EPHX 1外顯子3的337 T突變?yōu)镃(頻率為0.453),可導(dǎo)致卡馬西平羥基化/環(huán)氧化物比例增高,而外顯子4的416 A突變?yōu)镚(頻率為0.135),則導(dǎo)致卡馬西平羥基化/環(huán)氧化比例降低[10,35]。UGT2B7主要介導(dǎo)卡馬西平的葡萄糖醛酸化,是一種重要的Ⅱ相代謝酶。UGT2B7的802位C突變?yōu)門,可導(dǎo)致蘇氨酸突變?yōu)榻M氨酸,基因突變頻率為0.11,然而并未發(fā)現(xiàn)此代謝酶的基因多態(tài)性與卡馬西平維持劑量有關(guān)[10]。
卡馬西平可引起皮疹,包括輕度的斑丘疹(MPE)以及嚴(yán)重危及生命的皮疹(SCR),如Stevens-Johnson綜合征(SJS)、中毒性表皮壞死溶解(TEN)和藥物超敏綜合征(HSS)。研究表明,SCR的死亡率高達(dá)30%,且>90%的SCR發(fā)生在卡馬西平使用的前2個(gè)月內(nèi),因此對患者的健康造成了極大的威脅。
Hung等[36]研究顯示,HLA-B*1502在卡馬西平引起的SJS/TEN中一定出現(xiàn),而在卡馬西平應(yīng)用后無皮疹人群僅為3%,且與代謝酶基因多態(tài)性無關(guān)。Locharernkul等[37]認(rèn)為,HLA-B*1502與卡馬西平引起的MPE和HSS基因無關(guān),因此可以用來預(yù)測卡馬西平引起的SJS/TEN反應(yīng)。Lonjou等[38]發(fā)現(xiàn),卡馬西平誘導(dǎo)的與HLA-B*1502基因相關(guān)的SJS/TEN只在亞洲人中表現(xiàn),而在高加索人中無此現(xiàn)象。因此,美國食品與藥物管理局(FDA)于2007年提出亞洲地區(qū)首次服用卡馬西平的患者,應(yīng)進(jìn)行HLA-B*1502基因型檢測,以避免卡馬西平導(dǎo)致的嚴(yán)重不良反應(yīng)[39,40]。
運(yùn)用藥物基因組學(xué)指導(dǎo)癲癇患者用藥已成趨勢,國內(nèi)、外學(xué)者雖有一系列研究,但難以評估合并用藥、生活環(huán)境的差異等對試驗(yàn)結(jié)果造成的影響。因試驗(yàn)設(shè)計(jì)不規(guī)范,不同研究結(jié)果難以比較且有重復(fù)。與卡馬西平用藥相關(guān)的基因變異眾多,而現(xiàn)有的研究大多集中于單個(gè)基因的變異。面對復(fù)雜的癲癇疾病,要真正實(shí)現(xiàn)卡馬西平個(gè)體化用藥,藥物基因組學(xué)研究還需不斷深入。
[1]Mann MW,Pons G.Various pharmacogenetic aspects of antiepileptic drug therapy:a review[J].CNS Drugs,2007,21(2):143.
[2]Rioux PP.Clinical trials in pharmacogenetics and pharmacogenomics:methods and applications[J].Am J Health Syst Pharm,2000,57(9):887.
[3]Loscher W,Klotz U,Zimprich F,et al.The clinical impact of pharmacogenetics on the treatment of epilepsy[J].Epilepsia,2009,50(1):1.
[4]Lakhan R,Kumari R,Misra UK,et al.Differential role of sodium channels SCN1A and SCN2A gene polymorphisms with epilepsy and multiple drug resistance in the north Indian population[J].Br J Clin Pharmacol,2009,68(2):214.
[5]Heinzen EL,Yoon W,Tate SK,et al.Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A[J].Am J Hum Genet,2007,80(5):876.
[6]Tate SK,Depondt C,Sisodiya SM,et al.Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin[J].Proc Natl Acad Sci,2005,102(15):5507.
[7]Tate SK,Singh R,Hung CC,et al.A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose[J].Pharmacogenet Genomics,2006,16(10):721.
[8]Zimprich F,Stogmann E,Bonelli S,et al.Afunctional polymorphism in the SCN1A gene is not associated with carbamazepine dosages in Austrian patients with epilepsy[J].Epilepsia,2008,49(6):1108.
[9]Sills G,Mohanraj R,Butler E.A single-nucleotide polymorphism in the SCN2A gene is associated with uncontrolled epilepsy[J].Epilepsia,2004,45(7):226.
[10]Makmor-Bakry M,Sills GJ,Hitiris N,et al.Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing[J].Clin Neuropharmacol,2009,32(4):205.
[11]Catterall WA,Goldin AL,Waxman SG.International Union of Pharmacology.XLVII.Nomenclature and structure-function relationships of voltage-gated sodium channels[J].Pharmacol Rev,2005,57(4):397.
[12]Brinkmann U,Roots I,Eichelbaum M.Pharmacogenetics of the human drug-transporter gene MDR1:impact of polymorphisms on pharmacotherapy[J].Drug Discov Today,2001,6(16):835.
[13]Borst P,Evers R,Kool M,et al.A family of drug transporters:the multidrug resistance-associated proteins[J].J Natl Cancer Inst,2000,92(16):1295.
[14]Nishimura A,Honda N,Sugioka N,et al.Evaluation of carbamazepine pharmacokinetic profiles in mice with kainic acid-induced acute seizures[J].Biol Pharm Bull,2008,31(12):2302.
[15]Volk HA,Loscher W.Multidrug resistance in epilepsy:rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures[J].Brain,2005,128(Pt 6):1358.
[16]Woodahl EL,Ho RJ.The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function[J].Curr Drug Metab,2004,5(1):11.
[17]Siddiqui A,Kerb R,Weale ME,et al.Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1[J].N Engl J Med,2003,348(15):1442.
[18]Lakhan R,Misra UK,Kalita J,et al.No association of ABCB1 polymorphisms with drug-refractory epilepsy in a north Indian population[J].Epilepsy Behav,2009,14(1):78.
[19]Bournissen FG,Moretti ME,Juurlink DN,et al.Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs:a meta-analysis[J].Epilepsia,2009,50(4):898.
[20]Seo T,Ishitsu T,Ueda N,et al.ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients[J].Pharmacogenomics,2006,7(4):551.
[21]Kerb R.Implications of genetic polymorphisms in drug transporters for pharmacotherapy[J].Cancer Lett,2006,234(1):4.
[22]Dallas S,Miller DS,Bendayan R.Multidrug resistance-associated proteins:expression and function in the central nervous system[J].Pharmacol Rev,2006,58(2):140.
[23]Schinkel AH,Jonker JW.Mammalian drug efflux transporters of the ATP binding cassette(ABC)family:an overview[J].Adv Drug Deliv Rev,2003,55(1):3.
[24]Potschka H,F(xiàn)edrowitz M,Loscher W.P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain[J].Neuroreport,2001,12(16):3557.
[25]Begley DJ.ABC transporters and the blood-brain barrier[J].Curr Pharm Des,2004,10(12):1295.
[26]Ito S,Ieiri I,Tanabe M,et al.Polymorphism of the ABC transporter genes,MDR1,MRP1 and MRP2/cMOAT,in healthy Japanese subjects[J].Pharmacogenetics,2001,2(11):175.
[27]Naesens M,Kuypers DR,Verbeke K,et al.Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients[J].Transplantation,2006,82(8):1074.
[28]Ufer M,Mosyagin I,Muhle H,et al.Non-response to antiepileptic pharmacotherapy isassociated with the ABCC2-24C>T polymorphism in young and adult patients with epilepsy[J].Pharmacogenet Genomics,2009,19(5):353.
[29]Suzuki H,Sugiyama Y.Single nucleotide polymorphisms in multidrug resistance associated protein 2(MRP2/ABCC2):its impact on drug disposition[J].Adv Drug Deliv Rev,2002,54(10):1311.
[30]Henriette E,Meyer zu Schwabedissen,Jedlitschky G,et al.Variable expression of MRP2(ABCC2)in human placenta:influence of gestational age and cellular differentiation[J].Drug Metab Dispos,2005,33(7):896.
[31]Kim DW,Lee SK,Chu K,et al.Lack of association between ABCB1,ABCG2,and ABCC2 genetic polymorphisms and multidrug resistance in partial epilepsy[J].Epilepsy Res,2009,84(1):86.
[32]AwasthiS,HalleneKL,F(xiàn)azioV,etal.RLIP76,anon-ABC transporter,and drug resistance in epilepsy[J].BMC Neurosci,2005,6(27):61.
[33]Leschziner GD,Jorgensen AL,Andrew T,et al.The association between polymorphisms in RLIP76 and drug response in epilepsy[J].Pharmacogenomics,2007,8(12):1715.
[34]Soranzo N,Kelly L,Martinian L,et al.Lack of support for a role for RLIP76(RALBP1)in response to treatment or predisposition to epilepsy[J].Epilepsia,2007,48(4):674.
[35]Nakajima Y,Saito Y,Shiseki K,et al.Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients[J].Eur J Clin Pharmacol,2005,61(1):25.
[36]Hung SI,Chung WH,Jee SH,et al.Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions[J].Pharmacogenet Genomics,2006,16(4):297.
[37]Locharernkul C,Loplumlert J,Limotai C,et al.Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population[J].Epilepsia,2008,49(12):2087.
[38]Lonjou C,Thomas L,Borot N,et al.A marker for Stevens-Johnson syndrome…:ethnicity matters[J].Pharmacogenomics J,2006,6(4):265.
[39]Ferrell PB,Jr.,McLeod HL.Carbamazepine,HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermalnecrolysis:US FDA recommendations[J].Pharmacogenomcs,2008,9(10):1543.
[40]Kuehn BM.FDA:Epilepsy drugs may carry skin risks for Asians[J].Jama,2008,300(24):2845.