邱志平,林火南
(1.華僑大學(xué)數(shù)學(xué)科學(xué)學(xué)院,福建 泉州 362021;2.福建師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州 350007)
可加布朗運(yùn)動(dòng)增量“快點(diǎn)”集的Packing維數(shù)
邱志平1,林火南2
(1.華僑大學(xué)數(shù)學(xué)科學(xué)學(xué)院,福建 泉州 362021;2.福建師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州 350007)
討論可加布朗運(yùn)動(dòng)樣本軌道的重分形分析問(wèn)題.利用構(gòu)造上極限型集,集的乘積的Packing維數(shù)和Hausdorff維數(shù)關(guān)系的方法,分別得到其局部增量和沿坐標(biāo)方向增量?jī)煞N不同增量形式“快點(diǎn)”集的Packing維數(shù)結(jié)果.
可加布朗運(yùn)動(dòng);“快點(diǎn)”集;Packing維數(shù);重分形分析
Orey等[1]在討論布朗運(yùn)動(dòng)的重對(duì)數(shù)律時(shí),得到了布朗運(yùn)動(dòng)增量“快點(diǎn)”集的Hausdorff維數(shù)結(jié)果.在多指標(biāo)隨機(jī)過(guò)程研究中,Wiener單是最具重要性和代表性.在討論Wiener單的樣本軌道性質(zhì)中,可加布朗運(yùn)動(dòng)起到關(guān)鍵的作用[2-5],但是,可加布朗運(yùn)動(dòng)是可加Lévy過(guò)程(Additive Lévy Processes)的特例,是源自Lévy過(guò)程的相交與自相交問(wèn)題[6].可加Lévy過(guò)程是指滿足
條件的多指標(biāo)隨機(jī)過(guò)程,即
其中,Xi={Xi(t)∶t∈R+}(1≤i≤N)是取值于Rd相互獨(dú)立的Lévy過(guò)程.若Xi(1≤i≤N)均為布朗運(yùn)動(dòng),則稱X={X(t)∶t}為可加布朗運(yùn)動(dòng).
而沿坐標(biāo)方向增量“α-快點(diǎn)”集記為
文[7]得到了AT(α)與BT(α)Hausdorff維數(shù)結(jié)果,當(dāng)T>0,0≤α≤時(shí),則dim(AT(α))=N-α2,a.s.(即幾乎處處,下略);而當(dāng)T>0,0≤α≤1時(shí),則 dim(BT(α))=N-α2,a.s..
定理1 設(shè)T>0,0≤α<1,AT(α)如式(1)所示,則dim(AT(α))=N,a.s..
定理2 設(shè)T>0,0≤α<1,BT(α)如式(2)所示,則dim(BT(α))=N,a.s..
由此可發(fā)現(xiàn),當(dāng)0<α<1時(shí),AT(α)和BT(α)的Hausdorff維數(shù)與其Packing維數(shù)不相等.
則φ-p(E)是一個(gè)測(cè)度,稱φ-p(E)為E的Packing測(cè)度.定義E的Packing維數(shù)為
有關(guān)Packing測(cè)度和Packing維數(shù)的有關(guān)性質(zhì),可參見(jiàn)文[8].
設(shè)Bi={Bi(ti)∶ti∈R+}(1≤i≤N),是定義在(Ω,F(xiàn),P)上的標(biāo)準(zhǔn)布朗運(yùn)動(dòng),它們相互獨(dú)立,若
下面,給出可加布朗運(yùn)動(dòng)局部增量“快點(diǎn)”集的Packing維數(shù).
定理3 設(shè)T>0,0≤α0<1,AT(α0)如式(1)所示,則dim(AT(α0))=N,a.s..
證明 僅對(duì)N=2的情況結(jié)予證明,N>2的情況類似可得.不妨假設(shè)T=1,α1∈(α0,1),δn=n2-n(n≥1).定義一族服從(0-1)分布的隨機(jī)變量序列{ZI}I∈Mn(n≥1)如下:
由布朗運(yùn)動(dòng)一致連續(xù)模結(jié)果[1]可知,幾乎處處(a.s.)地存在n0=n0(ω),使得當(dāng)n≥n0(ω)時(shí),對(duì)于?I∈Mn,?s∈I,有
若進(jìn)一步地,ZI=1,當(dāng)n充分大之后,則有
定理4 設(shè)T>0,0≤α0<1,BT(α0)如式(2)所示,則dim(BT(α0))=N,a.s..
證明 僅對(duì)N=2的情況給予證明,N>2的情況類似可得.由于
對(duì)于?E,F(xiàn)?Rd[10],有
dim(E)+dim(F)≤dim(E×F)≤dim(E)+dim(F).
[1]OREY S,TAYLOR S J.How often on a Brownian path does the law of iterated logarithm fail?[J].Proc London Math Soc,1974,28(1):174-192.
[2]黃群,林火南.布朗單樣本軌道的重分形分析[J].福建師范大學(xué)學(xué)報(bào):自然科學(xué)版,2003,19(2):1-8.
[3]EHM W.Sample function properties of mutli-parameter stable processes[J].Probability Theory and Related Fields,1981,56(2):195-228.
[4]林火南.Wiener單的局部時(shí)和水平集的Hausdorff測(cè)度[J].中國(guó)科學(xué):A輯,2000,30(10):869-880.
[5]KHOSHNEVISAN D,SHI Z.Brownian sheet and capacity[J].Ann Probab,1999,27(3):1135-1159.
[6]KHOSHNEVISAN D,XIAO Y M.Level sets of additive Lévy processes[J].Ann Probab,2002,30(1):62-100.
[7]邱志平,林火南.可加布朗運(yùn)動(dòng)樣本軌道的重分形分析[J].福建師范大學(xué)學(xué)報(bào):自然科學(xué)版,2004,20(4):14-19.
[8]FALCONER KJ.Fractal geometry-mathematical foundations and application[M].New York:John Wiley,1990.
[9]DEMBO A,PERES Y,ROSEN J,et al.Thick points for spatial Brownian motion:Multifractal analysis of occupation measure[J].Ann Probab,2000,28(1):1-35.
[10]TRICOT C.Two definitions of fractal dimension[J].Math Proc Cambridge Philos Soc,1982,91(1):57-74.
[11]XIAO Yi-min.Packing dimension,Hausdorff dimension and Cartesian product sets[J].Math Proc Cambridge Philos Soc,1996,120(3):535-546.
Packing Dimension of“Fast Point”Sets for Additive Brownian Motion
QIU Zhi-ping1,LIN Huo-nan2
(1.School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China;2.School of Mathematics and Computer Science,F(xiàn)ujian Normal University,F(xiàn)uzhou 350007,China)
The multifractal analysis for the sample paths of additive Brownian motion is discussed in this paper.The Packing dimension of“fast point”sets determined by the local increment and by the incerment in the direction of coordinate for additive Brownian motion are obtained respectively by means of constructing a limsup random set and the relation between Packing dimension and Hausdorff dimension of the Product sets.
additive Brownian motion;“fast point”sets;Packing dimension;multifractal analysis
O 211.6
A
1000-5013(2010)04-0480-03
(責(zé)任編輯:陳志賢 英文審校:張金順,黃心中)
2008-09-24
邱志平(1979-),男,講師,主要從事隨機(jī)過(guò)程理論及應(yīng)用的研究.E-mail:qzp@hqu.edu.cn.
華僑大學(xué)科研基金資助項(xiàng)目(08HZR20)