張 波,栗 慧,邵燕靈
(中北大學(xué) 數(shù)學(xué)系,太原 030051)
一類特殊本原不可冪定號有向圖的local基
張 波,栗 慧,邵燕靈
(中北大學(xué) 數(shù)學(xué)系,太原 030051)
對一類特殊的含有3個圈的本原不可冪定號有向圖的local基進(jìn)行了研究.運(yùn)用“異圈對”、Frobenius集及本原指數(shù)等討論圖中是否有相應(yīng)的SSSD途徑對,得到了這類圖的local基與基.
local基;定號有向圖;本原
將有向圖D(可能含有環(huán))中的每一條弧定義一個符號1或-1所得的圖稱為D的定號有向圖,記為S,D稱為S的基礎(chǔ)有向圖.
定義1[1]如果定號有向圖S中不含SSSD途徑對,則稱S是可冪的;否則,稱S是不可冪的.
定義2[2]設(shè)D是一個有向圖,如果存在正整數(shù)k,使得對于D的任意頂點(diǎn)vi,vj(可以相同),都有從vi到vj長為k的途徑,則稱D為本原有向圖,最小的k稱為D的本原指數(shù),記作exp(D).
定義4[1]設(shè)S是一個本原不可冪定號有向圖,u∈V(S),若對任意t≥l,從u到任意一點(diǎn)v(v∈V(S))都有長為t的SSSD途徑對,則稱最小的正整數(shù)l為頂點(diǎn)u的基,記為lS(u).
定義5[1]設(shè)S是一個本原不可冪定號有向圖,若對任意頂點(diǎn)vi,vj(可以相同),對任意t≥l,從vi到vj都有長為t的SSSD途徑對,則稱最小的正整數(shù)l為定號有向圖S的基,記為l(S).
引理1[4]如果S是一個本原定號有向圖,那么S不可冪當(dāng)且僅當(dāng)S中存在一對圈C1和C2(長度分別為p1和p2),滿足下面2個條件之一:
(A)p1是奇數(shù),p2是偶數(shù),且sgnC2=-1;
(B)p1和p2都是奇數(shù),且sgnC1=-sgnC2.
為方便起見,稱滿足(A)或(B)的圈對C1和C2為“異圈對”.容易看到,閉圈對W1=p2C1和W2=p1C2有相同的長度p1p2,但符號不同,即
設(shè)x,y為本原有向圖D中的有序頂點(diǎn)對,如果任意一個從x到y(tǒng)長度不小于dL(D)(x,y)的途徑都由一些從x到y(tǒng)長為dL(D)(x,y)的途徑W及若干個與W有公共點(diǎn)的圈組成,則稱有序頂點(diǎn)對x,y有唯一途徑性質(zhì).
設(shè)D為一個本原有向圖,h為非負(fù)整數(shù),Rh(x)表示從頂點(diǎn)x出發(fā),所有經(jīng)過長度為h的途徑能夠到達(dá)的頂點(diǎn)的集合.
引理3[3]設(shè)D為一個本原有向圖,x,y是D中不同的2個點(diǎn),且Rh(x)={y},即從頂點(diǎn)x出發(fā),長度為h的途徑能夠到達(dá)的頂點(diǎn)只有y,則
引理4[3]設(shè)S是一個本原不可冪定號有向圖,x∈V(S),r(x)表示最小的正整數(shù)k,使得從x到x存在長為k的SSSD途徑對,則
引理5[3]設(shè)S是一個本原不可冪定號有向圖,x,y是S中不同的2個點(diǎn),且Rh(x)={y},如果從x到y(tǒng)所有長為h的途徑的符號相同,則
本研究主要對一類特殊本原不可冪定號有向圖S*的local基進(jìn)行了研究,其基礎(chǔ)圖為D*(見圖1),其中,m+1與n-2互素,m≥2,且n>m+3.
圖1 基礎(chǔ)圖D*Figure 1 Basic graph D*
定理 設(shè)S*是一個n階本原不可冪定號有向圖,其基礎(chǔ)圖為D*,則有
[1] Gao Y B,Shao Y L,Shen J.Bounds on the local bases of primitive nonpowerful nearly reducible sign patterns[J].Linear and Multilinear Algebra,2009,57(2):205-215.
[2] Li Q,Liu B L.Bounds on thekth multi-gbase index of nearly reducible sign pattern matrices[J].Discrete Mathematics,2008,308:4846-4860.
[3] Ma H P.Bounds on the local bases of primitive,non-powerful,minimally strong signed digraphs[J].Linear Algebra and its Applications,2009,430:718-731.
[4] You L H,Shao J Y,Shan H Y.Bounds on the bases of irreducible generalized sign pattern matrices[J].Linear Algebra and Its Applications,2007,427:285-300.
[5] Shao J Y.On the exponent of a primitive digraph[J].Linear Algebra and Its Applications,1985,64:21-31.
[6] Dulmage A L,Mendelsohn N S.Gaps in the exponent set of primitive matrices[J].Illinois J Math,1964,8:642-656.
Local bases of a special class of primitive non-powerful signed digraphs
ZHANGBo,LIHui,SHAOYanling
(Department of Mathematics,North University of China,Taiyuan 030051,China)
The local bases is studied for a special class of primitive non-powerful signed digraphs with three cycles.The knowledge about“distinguished cycle pair”,F(xiàn)robenius set and exponent are used to discuss whether there is a pair of related SSSD walks in digraphs,and the local bases and bases are obtained for the class of digraphs.
local bases;signed digraphs;primitive
O157.5
A
1671-1114(2011)02-0016-04
2010-05-07
山西省自然科學(xué)基金資助項(xiàng)目(2008011009)
張 波(1983—),男,碩士研究生.
邵燕靈(1963—),女,教授,博士生導(dǎo)師,主要從事組合數(shù)學(xué)方面的研究.
(責(zé)任編校 馬新光)