丁皓明
(阿壩師范高等??茖W(xué)校數(shù)學(xué)系,四川郫縣 611741)
具有指數(shù)度數(shù)的時(shí)滯混沌系統(tǒng)的脈沖指數(shù)穩(wěn)定性
丁皓明
(阿壩師范高等??茖W(xué)校數(shù)學(xué)系,四川郫縣 611741)
利用Lyapunov穩(wěn)定性定理和線性矩陣不等式,構(gòu)造適當(dāng)?shù)腖yapunov-Krasovskii函數(shù),得到了具有指數(shù)度數(shù)的多時(shí)滯混沌系統(tǒng)脈沖同步的充分條件,改進(jìn)了已有的相關(guān)結(jié)果.
時(shí)滯混沌系統(tǒng);脈沖指數(shù);Lyapunov穩(wěn)定性定理;線性矩陣不等式;Lyapunov-Krasovskii函數(shù)
在混沌系統(tǒng)同步性問題研究中,人們總是期望發(fā)送和接收信號(hào)能達(dá)到完全同步.然而,在通訊安全系統(tǒng)中發(fā)送與接收信號(hào)之間總存在誤差.因此,發(fā)送和接受系統(tǒng)之間的誤差系統(tǒng)的穩(wěn)定性就成了近年來研究的熱點(diǎn).文獻(xiàn)[1-2]利用非光滑Lyapunov-Like函數(shù)得出了含有脈沖及脈沖滯后的發(fā)送與接收系統(tǒng)同步的條件.文獻(xiàn)[3]利用Lyapunov-krasovskii函數(shù)與線性矩陣不等式來研究誤差系統(tǒng)的穩(wěn)定性,獲得了接受系統(tǒng)與發(fā)送系統(tǒng)脈沖同步的條件.本文對文獻(xiàn)[3]的系統(tǒng)進(jìn)行了改進(jìn)變換,研究了當(dāng)文獻(xiàn)[3]中的發(fā)送與接收系統(tǒng)帶有指數(shù)度數(shù)時(shí),誤差時(shí)滯系統(tǒng)的脈沖指數(shù)穩(wěn)定性,改進(jìn)了文獻(xiàn)[3]的結(jié)論.
考慮下面帶有反饋的混沌系統(tǒng)
此處,x(.)∈Rn是狀態(tài)向量,u(.)∈Rn是控制回饋輸入向量,A,B∈Rn×n是常數(shù)矩陣,f1,f2∈Rn是非線性連續(xù)函數(shù),并且保證解存在唯一.r>0是時(shí)滯常數(shù).
假設(shè)系統(tǒng)(1)滿足的初始條件為:
其中?(t)在[t0?r,t0]上連續(xù)有界.
假設(shè)系統(tǒng)有不穩(wěn)定的固定點(diǎn),或者是不穩(wěn)定的周期軌道x%(t),并且x%(t)是連續(xù)的混沌解.反饋控制的目的是為了保障x%(t)漸近收斂.這里控制是標(biāo)準(zhǔn)的反饋控制方法,控制輸入向量是:
其中K在此處是控制器可調(diào)矩陣的系數(shù).
混沌系統(tǒng)(1)接收端的表達(dá)式為:
在混沌系統(tǒng)(1)和(3)應(yīng)用如下的轉(zhuǎn)換:
其中α>0是常數(shù).
系統(tǒng)(4)滿足的初始條件為:
其中?(t)在[t0?r,t0]上連續(xù)有界.
系統(tǒng)(6)滿足的初始條件是:
將變換(4)代入(1)的控制系統(tǒng)可得:
在給出主要結(jié)論之前,先引入兩個(gè)引理.
引理1 對于向量a,b∈R和對稱正定矩陣Q,有 2ab≤aQa+bQb.
引理2①見: Gu K. An integral inequality in the stability problem of time-delay systems [C]// Proceeding of 39th IEEE Conference on Decision and Control. Sydney, 2000: 2805-2810.對任意的正定矩陣N∈Rn×n,存在γ>0以及向量函數(shù)ω: [0 ,γ]→Rn,有:
則誤差系統(tǒng)(14)的零解是指數(shù)穩(wěn)定的,即混度系統(tǒng)(8)和(9)是脈沖指數(shù)同步的,它們的指數(shù)穩(wěn)定度為α.其中,
應(yīng)用引理1和(13),可以得到:
混沌系統(tǒng)的脈沖同步性在通訊安全系統(tǒng)中有很廣泛的應(yīng)用.本文應(yīng)用schur補(bǔ)和指數(shù)穩(wěn)定性定義對混沌系統(tǒng)同步問題進(jìn)行理論分析,避免了復(fù)雜的 Lyapunov指數(shù)計(jì)算,得到了差信號(hào)系統(tǒng)的指數(shù)穩(wěn)定性條件.滿足此條件,發(fā)送和接收系統(tǒng)就會(huì)達(dá)到混沌同步.
[1]Guan Z H, Chan C W, Leung Y T, et al. Robust Stabilization of Singular-impulsive-delayed Systems with non-linear Perturbations [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(8): 1011-1019.
[2]Khadra A, Liu X Z, Shen X. Impulsively synchronizing chaotic systems with delay and applications to secure communication [J]. Automatica , 2005, 41: 1491-1502.
[3]丁皓明. 一類多時(shí)滯混沌系統(tǒng)的脈沖同步問題的研究[J]. 中國科技信息, 2009, 24: 37-39.
[4]Boyd S, Ghaoui E L, Feron E, et al. Linear Matrix Inequalities In System and Control Theory [M]. Philadelphia: Society for Industrial and Applied Mathematics, 1994: 19-21.
[5]Kolmanovskii V, Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations [M]. Netherlands: Kluwer Academic Publishers, 1999: 527.
Impulsive Exponential Stabilization of Time-delay Chaotic System with Exponential Degree
DING Haoming
(Department of Mathematics, Aba Teacher’s College, Pixian, China 611741)
Appropriate Lyapunov-Krasovskii function was constructed by applying the Lyapunov stability theory and linear matrix inequalities. Some sufficient conditions of multiple time-delay chaotic system’s impulsive synchronization with exponential degree were given to improve the results of the relevant documents.
Time-delay Chaotic System; Impulsive Exponent; Lyapunov Stability Theory; Linear Matrix Inequality; Lyapunov-Krasovskii Function
(編輯:王一芳)
O29
A
1674-3563(2011)01-0024-08
10.3875/j.issn.1674-3563.2011.01.004 本文的PDF文件可以從xuebao.wzu.edu.cn獲得
2010-06-13
丁皓明(1978- ),女,回族,四川金川人,助教,碩士,研究方向:微分方程的穩(wěn)定性