陳敬龍,張來(lái)斌,段禮祥,胡 超
(中國(guó)石油大學(xué)機(jī)械與儲(chǔ)運(yùn)工程學(xué)院,北京 102249)
基于提升小波包的往復(fù)壓縮機(jī)活塞-缸套磨損故障診斷
陳敬龍,張來(lái)斌,段禮祥,胡 超
(中國(guó)石油大學(xué)機(jī)械與儲(chǔ)運(yùn)工程學(xué)院,北京 102249)
針對(duì)往復(fù)壓縮機(jī)活塞-缸套磨損故障微弱信號(hào)特征識(shí)別問(wèn)題,提出一種識(shí)別該類(lèi)信號(hào)微弱特征的自適應(yīng)非抽樣提升小波包方法(AULSP)。該方法以分解層信號(hào)所有樣本的預(yù)測(cè)差值平方和最小為目標(biāo)函數(shù),算出與信號(hào)特征自適應(yīng)匹配的初始算子,并構(gòu)造非抽樣算子算出下一層各頻帶信號(hào)。對(duì)各層細(xì)節(jié)信號(hào)進(jìn)行閾值處理并重構(gòu),對(duì)降噪后的信號(hào)再進(jìn)行小波包分解。各分解頻帶信號(hào)長(zhǎng)度與原始信號(hào)的長(zhǎng)度相同,無(wú)須重構(gòu)即可識(shí)別時(shí)域故障微弱信號(hào)特征。用這種方法成功提取了某往復(fù)壓縮機(jī)活塞與缸壁發(fā)生碰磨故障時(shí)產(chǎn)生的弱周期性沖擊信號(hào)。
提升小波包;往復(fù)壓縮機(jī);磨損;信號(hào)分解;診斷
往復(fù)式壓縮機(jī)的結(jié)構(gòu)復(fù)雜,其振動(dòng)信號(hào)表現(xiàn)出強(qiáng)烈的非線性,故障診斷工作十分復(fù)雜[1],常規(guī)的頻譜分析難以對(duì)其做出準(zhǔn)確的診斷。近年來(lái),在機(jī)械故障診斷中,提升小波包得到了廣泛的應(yīng)用[2-5]。Sweldens和Daubechies于20世紀(jì)90年代提出了提升小波變換[6-9]。曹建軍等[2]給出了先序分解后序搜索最優(yōu)基提升小波包分解算法,并成功應(yīng)用于缸蓋振動(dòng)信號(hào)降噪;姜洪開(kāi)等[3]通過(guò)判斷分解層信號(hào)相鄰樣本點(diǎn)自相關(guān)系數(shù)的大小,自適應(yīng)選擇匹配信號(hào)特征的提升小波包算子,其構(gòu)造的小波包成功應(yīng)用于齒輪箱故障診斷;胡橋、段晨東等[4-5]利用提升小波包提取出了滾動(dòng)軸承發(fā)生不同故障時(shí)的特征分量;王文波等[10]將構(gòu)造的提升小波包用于圖像降噪。經(jīng)典小包波與傳統(tǒng)的提升小波包在進(jìn)行信號(hào)分解時(shí),各頻帶信號(hào)的長(zhǎng)度是分解前信號(hào)長(zhǎng)度的一半,隨著分解層次的增加,各頻帶信號(hào)所包含的信息越來(lái)越少,這將導(dǎo)致信號(hào)失真[11],且設(shè)計(jì)與信號(hào)特征自適應(yīng)匹配的提升小波包算子的方法還有待進(jìn)一步改進(jìn)。非抽樣小波包不進(jìn)行抽樣運(yùn)算,每層各頻帶信號(hào)的長(zhǎng)度與原始信號(hào)的長(zhǎng)度相同,信息是冗余的。筆者對(duì)Claypoole[12]提出的提升算子的算法進(jìn)行改進(jìn),提出新的提升小波包分解算法,并用該方法對(duì)往復(fù)壓縮機(jī)缸套振動(dòng)信號(hào)進(jìn)行降噪處理,將降噪后的信號(hào)進(jìn)行4層小波包分解,提取活塞與缸套碰磨產(chǎn)生的沖擊信號(hào)。
提升小波的分解過(guò)程包括3個(gè)步驟:剖分、預(yù)測(cè)及更新[9]。
(1)剖分。將信號(hào)序列s[n]分解為偶樣本se[n]=s[2n]和奇樣本 so[n]=s[2n+1]。
(2)預(yù)測(cè)。用偶樣本預(yù)測(cè)奇樣本,細(xì)節(jié)信號(hào)d[n]定義為奇樣本與其預(yù)測(cè)值之差,即
式中,P為預(yù)測(cè)器。
(3)更新。用細(xì)節(jié)信號(hào)d[n]更新偶樣本,得到逼近信號(hào) c[n],表達(dá)式為
式中,U為更新器。
設(shè)計(jì)自適應(yīng)非抽樣提升小波的分解步驟,與文獻(xiàn)[12]和[13]的方法有所不同,不同點(diǎn)如下:
(1)Claypoole在設(shè)計(jì)初始預(yù)測(cè)器時(shí)只對(duì)奇樣本進(jìn)行預(yù)測(cè),而本文中考慮了分解層信號(hào)所有樣本點(diǎn)的預(yù)測(cè)信息。
(2)Jiang Hong-kai等[13]在設(shè)計(jì)初始預(yù)測(cè)器和初始更新器時(shí),所分解的逼近信號(hào)是上層逼近信號(hào)長(zhǎng)度的一半,信息量減少,這將導(dǎo)致所設(shè)計(jì)的提升算子不能對(duì)信號(hào)特征進(jìn)行最佳匹配。本文中用非抽樣提升算子算出逼近信號(hào)后,用與原始信號(hào)長(zhǎng)度等長(zhǎng)的逼近信號(hào)設(shè)計(jì)下層提升算子,信息量得到了較大程度的保留。
(3)推導(dǎo)了用非抽樣提升算子對(duì)信號(hào)進(jìn)行分解的時(shí)域計(jì)算公式。
本文中設(shè)計(jì)的自適應(yīng)非抽樣提升小波分解分為3個(gè)步驟。
步驟1:設(shè)計(jì)第l層的初始預(yù)測(cè)器。設(shè)初始預(yù)測(cè)器 P=[p1,…,pN]T,使 P 僅抑制信號(hào)中 N -1階多項(xiàng)式分量,用剩余的1階自由度匹配給定的信號(hào)。構(gòu)造一個(gè)(N-1)×N矩陣V,其元素為
式中,sl-1為第 l-1 層逼近信號(hào);L 為 sl-1的長(zhǎng)度。解出一組預(yù)測(cè)系數(shù),使得所有樣本的預(yù)測(cè)差值平方和達(dá)到最小。
受邊界影響時(shí),采用周期延拓進(jìn)行處理。解方程(4)和 (5),解出的 P=[p1,…,pN]T即為第 l層的初始預(yù)測(cè)器。
解方程(9)求出U,U即為第l層的初始更新器。
步驟3:構(gòu)造非抽樣提升方案,并求出第l層的細(xì)節(jié)信號(hào)dl和逼近信號(hào) sl。設(shè)初始預(yù)測(cè)器 P={pm},m=1,2,…,N,第 l層非抽樣預(yù)測(cè)器 p[l]的表達(dá)式[13]為
將 sl-1中的每個(gè)樣本通過(guò) P[l]用相鄰的 2lN 個(gè)樣本進(jìn)行預(yù)測(cè),預(yù)測(cè)差值dl定義為第l層的細(xì)節(jié)信號(hào),即
設(shè)初始更新器 U={um},m=1,2,…,,第 l層非抽樣更新器 U[l]的表達(dá)式[13]為
對(duì)每層的細(xì)節(jié)信號(hào)進(jìn)行閾值處理,并對(duì)信號(hào)進(jìn)行重構(gòu)。目前,閾值處理主要采用Donoho等[14]提出的硬閾值和軟閾值處理方法。硬閾值處理方法的公式為
式中,tl(k-1)為小波包分解第l層第k-1個(gè)頻帶信號(hào)的閾值;sl(k-1)(n)為l層第k-1個(gè)頻帶信號(hào)的第n個(gè)樣本值;~l(k-1)(n)為 sl(k-1)(n)用閾值處理后得到的樣本值。
軟閾值降噪方法的公式為
式中,sgn(.)為符號(hào)函數(shù)。
采用Pan和Zhang等[15]提出的閾值選取方案,其表達(dá)式為
用降噪方法對(duì)3種仿真信號(hào)進(jìn)行降噪處理,并與經(jīng)典小波包進(jìn)行對(duì)比。信號(hào)1為1個(gè)包含3個(gè)頻率的正弦信號(hào)和白噪聲信號(hào)構(gòu)成的仿真信號(hào),信號(hào)信噪比為5.7736 dB,表達(dá)式為
信號(hào)2為一blocks信號(hào)疊加白噪聲信號(hào),信噪比為7 dB;信號(hào)3為一doppler信號(hào)疊加白噪聲信號(hào),信噪比為7 dB。
為比較降噪效果,引入信噪比RSN和均方差EMS來(lái)評(píng)價(jià),RSN越大,EMS越小,則降噪效果越好。
式中,L為原始信號(hào)的長(zhǎng)度;xi為不含噪聲信號(hào)在i時(shí)刻的采樣值;x'i為降噪處理后的信號(hào)在i時(shí)刻的值。
分別用本文方法對(duì)3種仿真信號(hào)進(jìn)行4層分解,各層初始預(yù)測(cè)器和初始更新器的長(zhǎng)度為4,對(duì)各層細(xì)節(jié)信號(hào)進(jìn)行軟閾值處理。經(jīng)典小波包的基小波選用db4小波,用全閾值降噪。降噪結(jié)果見(jiàn)表1。從表1可以看出,與經(jīng)典小波包相比,非抽樣提升小波包降噪獲得了更高的信噪比和更小的均方差。
表1 信號(hào)1~3的降噪效果對(duì)比Table 1 Noise reduction comparation of signal 1-3
某油田使用的往復(fù)式閃蒸汽壓縮機(jī)型號(hào)為DTY220MH-4.25×4,電動(dòng)機(jī)通過(guò)聯(lián)軸器帶動(dòng)曲軸運(yùn)轉(zhuǎn),電動(dòng)機(jī)額定轉(zhuǎn)速為1 500 r/min,活塞左右往復(fù)一次的時(shí)間為0.04 s。該機(jī)組運(yùn)行狀態(tài)良好時(shí),用加速度傳感器測(cè)取2缸缸套的振動(dòng)信號(hào),如圖1(a)所示。采樣頻率為16 kHz,采樣長(zhǎng)度為6 144個(gè)點(diǎn)。用本文方法對(duì)信號(hào)進(jìn)行4層分解,各層初始預(yù)測(cè)器和初始更新器的長(zhǎng)度為4,對(duì)各層高頻信號(hào)進(jìn)行硬閾值處理,對(duì)降噪后的信號(hào)再進(jìn)行4層小波包分解,分解后的第2頻帶信號(hào)如圖1(b)所示。從圖1(b)中可看出,每隔0.04 s有一個(gè)沖擊信號(hào)。這是因?yàn)榛钊c缸壁存在著間隙,此間隙導(dǎo)致活塞每往返一次與缸壁發(fā)生一次沖擊[16],這屬于正常磨損。
圖1 正常信號(hào)及用本文方法降噪后正常信號(hào)的第2頻帶信號(hào)Fig.1 Normal signal and its second band signal after denoising by AULSP
某次檢修時(shí)發(fā)現(xiàn)該機(jī)組振動(dòng)偏大,尤其2缸振動(dòng)大。圖2(a)為2缸缸套的原始振動(dòng)信號(hào)。采用本文方法對(duì)信號(hào)進(jìn)行降噪處理后再進(jìn)行4層小波包分解,分解后的第2頻帶信號(hào)如圖2(b)所示。從圖2(b)可看到,相鄰沖擊信號(hào)的時(shí)間間隔大約為0.02 s,活塞往返一次出現(xiàn)了2次沖擊信號(hào),活塞向左運(yùn)動(dòng)有一次沖擊,向右運(yùn)動(dòng)又有一次沖擊。除了活塞與缸壁間隙所引起的正常沖擊外,還有故障所引起的沖擊。據(jù)此判斷活塞與缸壁發(fā)生了碰磨故障。
圖2 故障信號(hào)及用本文方法降噪后故障信號(hào)的第2頻帶信號(hào)Fig.2 Fault signal and its second band signal after denoising by AULSP
用經(jīng)典小波包對(duì)該機(jī)組2缸缸套無(wú)故障和有故障時(shí)的振動(dòng)信號(hào)進(jìn)行降噪處理,并對(duì)降噪后的信號(hào)進(jìn)行4層經(jīng)典小波包分解。處理結(jié)果見(jiàn)圖3。圖3(a)中未能完整地保留正常沖擊信號(hào),圖3(b)中未能完整地保留正常沖擊信號(hào)及故障沖擊信號(hào),因此從圖3中不能得到有用的故障特征。
圖3 經(jīng)典小波包降噪后正常信號(hào)及故障信號(hào)的第2頻帶信號(hào)Fig.3 The second band signals of normal signal and fault signal denoised by classical wavelet packet
對(duì)2缸缸套進(jìn)行解體發(fā)現(xiàn),活塞環(huán)存在磨損問(wèn)題,活塞上有劃痕,如圖4、5所示。正是活塞和缸套之間的這種碰磨造成了故障沖擊信號(hào)。
圖4 活塞環(huán)磨損Fig.4 Wear of piston ring
圖5 活塞體損傷Fig.5 Damage of piston body
采用非抽樣算法對(duì)信號(hào)進(jìn)行分解,較完整地保留了缸套振動(dòng)信號(hào)中的正常沖擊成分及故障沖擊成分,無(wú)須對(duì)信號(hào)進(jìn)行重構(gòu)即可提取故障特征。往復(fù)壓縮機(jī)的振動(dòng)信號(hào)含有大量的沖擊成分,本文方法適用于往復(fù)壓縮機(jī)振動(dòng)信號(hào)的降噪及故障特征提取。給出了用非抽樣提升小波包算子計(jì)算各層各頻帶信號(hào)的時(shí)域計(jì)算公式。小波包對(duì)未分解的細(xì)節(jié)信號(hào)進(jìn)行進(jìn)一步分解,能展示信號(hào)的細(xì)節(jié)部分。設(shè)計(jì)初始預(yù)測(cè)器時(shí),以分解層信號(hào)所有樣本的預(yù)測(cè)差值平方和最小為目標(biāo)函數(shù),改進(jìn)了求取初始提升算子的步驟。用本文方法設(shè)計(jì)的提升算子能更好地與信號(hào)特征進(jìn)行匹配。
[1]王朝暉,姚德群,段禮祥.基于模糊聚類(lèi)的油田往復(fù)壓縮機(jī)氣閥故障診斷研究[J].機(jī)械強(qiáng)度,2007,29(3):521-524.
WANG Zhao-h(huán)ui,YAO De-qun,DUAN Li-xiang.Study on the method of oil field reciprocating compressor valve fault diagnosis based on fuzzy clustering [J].Journal of Mechanical Strength,2007,29(3):521-524.
[2]曹建軍,張培林,任國(guó)全,等.提升小波包最優(yōu)基分解算法及在振動(dòng)信號(hào)降噪中的應(yīng)用[J].振動(dòng)與沖擊,2008,27(8):114-116.
CAO Jian-jun,ZHANG Pei-lin,REN Guo-quan,et al.Lifting wavelet package decomposing algorithm under the best based and its applications in de-noising for vibration signal[J].Journal of Vibration and Shock,2008,27(8):114-116.
[3]姜洪開(kāi),王仲生,何正嘉.基于自適應(yīng)提升小波包的故障微弱信號(hào)特征早期識(shí)別[J].西北工業(yè)大學(xué)學(xué)報(bào),2008,26(1):99-102.
JIANG Hong-kai,WANG Zhong-sheng,HE Zheng-jia.Early identification of weak-signal fault features under very unfavorable environmentusing adaptive lifting scheme packet[J].Journal of Northwestern Polytechnical University,2008,26(1):99-102.
[4]胡橋,何正嘉,張周鎖.基于提升小波包變換和集成支持矢量機(jī)的早期故障智能診斷[J].機(jī)械工程學(xué)報(bào),2006,42(8):16-22.
HU Qiao,HE Zheng-jia,ZHANG Zhou-suo.Intelligent diagnosis for incipient fault based on lifting wavelet package transform and support vector machines ensemble[J].Chinese Journal of Mechanical Engineering,2006,42(8):16-22.
[5]段晨東,郭研.基于提升小波包變換的滾動(dòng)軸承包絡(luò)分析診斷方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(5):192-196.
DUAN Chen-dong,GUO Yan.An envelop analysis approach for ball bearing based on lifting wavelet packet transform [J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(5):192-196.
[6]SWELDENS W.The lifting scheme:a custom design construction of biorthogonal wavelets[J].Appl Comput Harmon Anal,1996,3(2):186-200.
[7]SWLEDENS W.The lifting scheme:a construction of second generation wavelets[J].SIAMJ Math Anal,1997,29(2):511-546.
[8]DAUBECHIES I,SWELDENS W.Factoring wavelet transform into lifting steps[J].J Fourier Anal App,1998,4(3):247-269.
[9]SWELDENS W,SCHRêDER P.Building your own wavelets at home[EB/OL].http://www.cse.ttu.edu.tw/-jmchen/wavelets/siggraph-courses/notes95-3.pdf.
[10]王文波,費(fèi)浦生,羿旭明,等.基于提升格式小波包變換的SAR圖像去噪[J].武漢大學(xué)學(xué)報(bào):信息科學(xué)版,2007,32(7):585-588.
WANG Wen-bo,F(xiàn)EI Pu-sheng,YI Xu-ming,et al.Denoising of SAR images based on lifting scheme wavelet packet transform [J].Geomatics and Information Science of Wuhan University,2007,32(7):585-588.
[11]高立新,湯文亮,胥永剛,等.基于冗余第二代小波的降噪技術(shù)[J].北京工業(yè)大學(xué)學(xué)報(bào),2008,34(12):1233-1237.
GAO Li-xin,TANG Wen-liang,XU Yong-gang,et al.Research on application of redundant second generation wavelet transform in denoising[J].Journal of Beijing University of Technology,2008,34(12):1233-1237.
[12]CLAYPOOLE R L Jr.Adaptive wavelet transform via lifting[D].USA:Rice University,1999.
[13]JIANG Hong-kai,HE Zheng-jia,DUAN Chen-dong.Gearbox fault diagnosis using adaptive redundant lifting scheme[J].Mechanical Systems and Signal Processing,2006,20(8):1992-2006.
[14]DONOHO D L.De-noising by soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.
[15]PAN Quan,ZHANG Lei,DAI Guang-zhong.Two denoising methods by wavelet transform[J].IEEE Transactions on Signal Processing,1999,47(12):3401-3406.
[16]王朝暉,張來(lái)斌.發(fā)動(dòng)機(jī)磨損狀態(tài)的相同頻率診斷法[J].冶金設(shè)備,2000(6):45-48.
WANG Zhao-h(huán)ui,ZHANG Lai-bin.The method of same frequency analysis for diagnosing the diesel’s wear condition [J].Metallurgical Equipment,2000(6):45-48.
Diagnosis of reciprocating compressor piston-cylinder liner wear fault based on lifting scheme packet
CHEN Jing-long,ZHANG Lai-bin,DUAN Li-xiang,HU Chao
(Faculty of Mechanical and Oil-Gas Storage and Transportation Engineering in China University of Petroleum,Beijing 102249,China)
Aiming at characteristics identification problem of weak signal for piston-cylinder liner wear fault of reciprocating compressors,a novel method to design adaptive undecimated lifting scheme packet(AULSP)was developed and applied to identify successfully weak-signal fault features of a certain reciprocating compressor.The minimum square sum of prediction difference of all sample points was taken as object function,and the initial operators that adaptively match the weak-signal features were calculated,then undecimated operators were constructed and used to calculate each frequency band on the next level.Noise can be restrained via thresholding operation.The signal length of each frequency band was the same as that of the original signal,thus time-domain fault features could be recognized without reconstruction.AULSP was applied to identify weak periodic impact signals caused by piston-liner wear.
lifting scheme packet;reciprocating compressor;wear;signal decomposition;diagnosis
TH 17
A
10.3969/j.issn.1673-5005.2011.01.026
1673-5005(2011)01-0130-05
2010-07-22
國(guó)家“863”計(jì)劃項(xiàng)目(2008AA06Z209);中國(guó)石油天然氣集團(tuán)公司創(chuàng)新基金項(xiàng)目(07E1005)
陳敬龍(1984-),男(漢族),江西瑞昌人,博士研究生,主要從事機(jī)械設(shè)備故障診斷研究。
(編輯 沈玉英)
中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版)2011年1期