呂萌
(燕山大學(xué) 信息科學(xué)與工程學(xué)院,河北 秦皇島 066004)
基于SIFT和人機(jī)交互的遙感影像識(shí)別方法研究
呂萌
(燕山大學(xué) 信息科學(xué)與工程學(xué)院,河北 秦皇島 066004)
尺度不變特征變換(SIFT)算法具有良好的尺度、光照以及空間旋轉(zhuǎn)不變性,在人機(jī)交互的環(huán)境中可以很好地識(shí)別出影像。介紹了SIFT算法和人機(jī)交互原理,并進(jìn)行了實(shí)驗(yàn)論證。實(shí)驗(yàn)結(jié)果表明,該方法能較好地識(shí)別出遙感影像,并具有實(shí)時(shí)性意義。
SIFT;遙感影像;識(shí)別;人機(jī)交互
飛機(jī)在采集敵方重要地面目標(biāo)影像時(shí),會(huì)產(chǎn)生各種類型的影像,使得實(shí)時(shí)識(shí)別影像非常困難。通常目標(biāo)影像會(huì)發(fā)生旋轉(zhuǎn)、縮放、成像品質(zhì)等變化。近年來,在計(jì)算機(jī)視覺領(lǐng)域,基于局部不變量描述符的方法在目標(biāo)識(shí)別和圖像配準(zhǔn)方面取得了顯著進(jìn)展。2004 年,哥倫比亞大學(xué)的LOWE David G教授提出一種基于新特征點(diǎn)提取的尺度不變特征變換(SIFT)算法[1]。該算法較好地解決了物體發(fā)生旋轉(zhuǎn)縮放、視角以及光照變化引起的圖像變形等問題,并在人機(jī)交互的環(huán)境下,能實(shí)時(shí)識(shí)別地面目標(biāo)。
SIFT特征向量生成的實(shí)現(xiàn)順序?yàn)闄z測(cè)尺度空間中的極值點(diǎn)、定位極值點(diǎn)的位置、確定特征點(diǎn)的方向、生成描述特征點(diǎn)的特征向量。
尺度空間理論目的是模擬圖像數(shù)據(jù)的多尺度特征,高斯卷積核是實(shí)現(xiàn)尺度變換的唯一線性核,一幅二維圖像的尺度空間定義為:
式中,G(x,y,σ)是尺度可變高斯函數(shù):
式中,(x,y)是空間坐標(biāo);σ是尺度坐標(biāo),σ值越小,表征該圖像被平滑得越少,相應(yīng)的尺度也就越小。大尺度對(duì)應(yīng)于圖像的概貌特征,小尺度對(duì)應(yīng)于圖像的細(xì)節(jié)特征。為了有效地在尺度空間檢測(cè)到穩(wěn)定的關(guān)鍵點(diǎn),提出了高斯差分尺度空間(DoG Scale-space)。利用不同尺度的高斯差分核與圖像卷積生成 DoG算子,其計(jì)算簡(jiǎn)單,是尺度歸一化的LoG算子的近似。為了尋找尺度空間的極值點(diǎn),每一個(gè)采樣點(diǎn)要與它所有的相鄰點(diǎn)比較,看其比它的圖像域和尺度域的相鄰點(diǎn)大或者小。如圖1所示,中間的檢測(cè)點(diǎn)與它同尺度的 8個(gè)相鄰點(diǎn)和上下相鄰尺度對(duì)應(yīng)的點(diǎn)(共26個(gè)點(diǎn))進(jìn)行比較,以確保在尺度空間和二維圖像空間都檢測(cè)到極值點(diǎn)。
在該過程中,精確確定關(guān)鍵點(diǎn)的位置和尺度,要同時(shí)去除低對(duì)比度的特征點(diǎn)和不穩(wěn)定的邊緣相應(yīng)點(diǎn),以增強(qiáng)匹配穩(wěn)定性、提高抗噪聲能力。
圖1 DoG尺度空間局部極值檢測(cè)
利用關(guān)鍵點(diǎn)鄰域像素的梯度方向分布特性為每個(gè)關(guān)鍵點(diǎn)指定方向參數(shù),使算子具備旋轉(zhuǎn)不變性。首先在高斯尺度空間計(jì)算特征點(diǎn)的梯度模和方向公式:
其中,m是梯度模;θ是梯度方向;L是原圖與高斯核的卷積,L所用的尺度為每個(gè)關(guān)鍵點(diǎn)各自所在的尺度,在實(shí)際計(jì)算時(shí),通常以關(guān)鍵點(diǎn)為中心的領(lǐng)域窗口內(nèi)采樣,用直方圖統(tǒng)計(jì)鄰域像素的梯度方向。
首區(qū)域上計(jì)算8個(gè)方向的梯度直方圖,繪制每個(gè)梯度方向的累加值,即可形成一個(gè)種子點(diǎn),因此,一共可以生成16個(gè)種子點(diǎn)。這樣,對(duì)于每個(gè)關(guān)鍵點(diǎn)就可以產(chǎn)生一個(gè)長(zhǎng)度為128的數(shù)據(jù),即最終形成一個(gè)長(zhǎng)度為128的SIFT特征向量。此時(shí)SIFT特征向量已經(jīng)去除了尺度變化、旋轉(zhuǎn)等幾何變形因素的影響,再繼續(xù)將特征向量的長(zhǎng)度歸一化,則可進(jìn)一步去除光照變化的影響。這種鄰域方向性信息聯(lián)合的思想增強(qiáng)了算法的抗噪聲能力,同時(shí)對(duì)含有定位誤差的特征匹配也提供了較好的容錯(cuò)性。特征向量生成的示意圖如圖2所示。
人機(jī)交互主要是利用人自身的高速、準(zhǔn)確識(shí)別物體的能力對(duì)目標(biāo)進(jìn)行實(shí)時(shí)識(shí)別。其重要指標(biāo)是反應(yīng)時(shí)間[2]。反應(yīng)時(shí)間是指人從機(jī)器或外界獲得信息,經(jīng)過大腦加工分析發(fā)出指令,到運(yùn)動(dòng)器官開始執(zhí)行動(dòng)作所需的時(shí)間。反應(yīng)時(shí)間是從包括感覺反應(yīng)時(shí)間(從信息開始刺激到感覺器官有感覺所用時(shí)間)到開始動(dòng)作所用時(shí)間(信息加工、決策、發(fā)令開始執(zhí)行所用時(shí)間)的總和。
由于人的生理心理因素的限制,人對(duì)刺激的反應(yīng)速度是有限的。一般情況下,反應(yīng)時(shí)間約為0.1 s~0.5 s,而受過特殊訓(xùn)練的飛行員反應(yīng)時(shí)間可以在0.1 s左右。其反應(yīng)時(shí)間的判別表示為:
式中,k為常數(shù),n為等概率出現(xiàn)的選擇對(duì)象數(shù)。
橋梁是重要軍事目標(biāo),實(shí)現(xiàn)對(duì)橋梁的實(shí)時(shí)打擊具有重要意義。本實(shí)驗(yàn)的軟件平臺(tái)為Matlab r2009a,計(jì)算機(jī)平臺(tái)為AMD 7750雙核處理器(2 GB內(nèi)存),選用某城市的某一橋梁(空間分辨率為10 m)進(jìn)行實(shí)驗(yàn)。
圖3為已知橋梁模板圖,其像素值為 26×57。圖 4為第一幅采集圖,其像素值為 200×112。圖 3、圖 4的視角高度為6 km。圖5為對(duì)模板圖的關(guān)鍵點(diǎn)分析。圖6為對(duì)模板圖的實(shí)時(shí)定位結(jié)果,其中在橫坐標(biāo)中,從0~26是模板圖,26~226是采集圖,從圖 6可以看出,采用SIFT算法可以將目標(biāo)識(shí)別出來,并能精確定位該橋梁的位置。
圖7為發(fā)生旋轉(zhuǎn)的采集圖,其像素值為 191×166,視角高度為6 km。圖8為實(shí)時(shí)定位結(jié)果,其中在橫坐標(biāo)中,0~26 是模板圖,26~217 是采集圖。
圖9為角度、視角高度都與模板圖不同的采集圖,其像素值為196×161,視角高度為6.52 km。圖10是實(shí)時(shí)定位結(jié)果,其中在橫坐標(biāo)中,0~26是模板圖,26~222是采集圖。
實(shí)驗(yàn)關(guān)鍵參數(shù)如表1所示。從實(shí)驗(yàn)結(jié)果可知,由于檢測(cè)出來的關(guān)鍵點(diǎn)較少,所以在人機(jī)交互的環(huán)境下,采用SIFT算法能實(shí)時(shí)地精確定位識(shí)別橋梁目標(biāo),定位的準(zhǔn)確度高于以往采用二值化圖像方法和提取邊緣線方法來識(shí)別遙感影像目標(biāo),識(shí)別的速度高于以往的改進(jìn)SIFT算法[3],并且其應(yīng)用范圍也比較廣[4]。但是本文提出的方法同其他改進(jìn)算法一樣存在不足,對(duì)于天氣較差時(shí)采集的影像,無法定位或識(shí)別率大大降低。如何提高特征向量的特征度,從而提高定位和識(shí)別的正確率,同時(shí)又可以保證實(shí)時(shí)性,將是下一步研究工作的重點(diǎn)。
表1 關(guān)鍵參數(shù)一覽表
[1]LOWE D G.Distinctive image features from scale—invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[2]http://zhidao.baidu.com/question/109629278.html? si=8.2010-08-29.
[3]GRABNER M, GRABNER H, BISCHOF H.Fast approximated SIFT[C].Asian Conference on Computer Vision,Hyderabad,India,2006:918-927.
[4]裴聰,戴立玲,盧章平.基于 SIFT的簡(jiǎn)化算法下圖像快速匹配[J].制造業(yè)自動(dòng)化,2010,32(1):132-135.
Recognition method of remote sensing image based on SIFT algorithm&human-computer interaction
Lv Meng
(Information Science and Engineering College,Yanshan University,Qinhuangdao 066004,China)
SIFT algorithm has good size,light and space rotation invariance.It is easy to identify the image in the environment of human-computer interaction.The principles of SIFT algorithm and human-computer interaction are discussed in this paper,and demonstrated by experiments.Experimental results show that the method can identify the remote sensing images in real-time.
SIFT;remote sensing image;recognition;human-computer interaction
TP751
A
1674-7720(2011)03-0033-02
2010-09-07)
呂萌,男,1985年生,碩士研究生,主要研究方向:遙感影像處理與識(shí)別。