張金陵,張福珍
(1.中國(guó)礦業(yè)大學(xué)理學(xué)院,江蘇徐州 221008;2.徐州高等師范學(xué)校數(shù)理系,江蘇徐州 221116;3.九州職業(yè)技術(shù)學(xué)院高等數(shù)學(xué)教研室,江蘇徐州 221116)
一類分?jǐn)?shù)階奇異微分方程邊值問(wèn)題正解的存在性
張金陵1,2,張福珍1,3
(1.中國(guó)礦業(yè)大學(xué)理學(xué)院,江蘇徐州 221008;2.徐州高等師范學(xué)校數(shù)理系,江蘇徐州 221116;3.九州職業(yè)技術(shù)學(xué)院高等數(shù)學(xué)教研室,江蘇徐州 221116)
利用Leray-Schauder型非線性抉擇和Krasnoselskii錐壓縮拉伸不動(dòng)點(diǎn)定理,給出了一類非線性分?jǐn)?shù)階奇異微分方程邊值問(wèn)題正解的存在性的充分條件.
非線性抉擇;不動(dòng)點(diǎn)定理;奇異微分方程;正解
分?jǐn)?shù)算子在各個(gè)學(xué)科領(lǐng)域中得到了廣泛的應(yīng)用,如物理、機(jī)械、化學(xué)、工程等.值得注意的是,分?jǐn)?shù)階微分方程的理論研究剛起步,分?jǐn)?shù)階微分方程邊值問(wèn)題作為分?jǐn)?shù)階微分方程理論研究的重要分支之一,近年來(lái)得到了研究者們的重視,也獲得了不少研究成果,如文獻(xiàn)[1-15],本文受文獻(xiàn)[16]啟發(fā),研究分?jǐn)?shù)階奇異邊值問(wèn)題.
定義1.1[2]函數(shù)y:(0,+∞)→R的α階Riemann-Liouville分?jǐn)?shù)階積分為
其中α>0,Γ(?)為gamma函數(shù).
定義1.2[2]連續(xù)函數(shù)y:(0,+∞)→R的α階Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)為
其中α>0,Γ(?)為gamma函數(shù),n=[α]+1.
引理1.1[2]若α>0,u∈C(0,1)?L1(0,1),則存在分?jǐn)?shù)階微分方程
引理1.6[17](Leray-Schauder非線性抉擇)假設(shè)Ω是Banach空間U上凸集K的一個(gè)相對(duì)子集.令F→K是緊的且0∈Ω,則
(2)存在一個(gè)點(diǎn)u∈?Ω和λ∈(0,1),使得u=λTu.
[1]Agarwal R P,Lakshmikantham V,Nieto J J.On the concept of solution for fractional differential equations with uncertainty[J].Nonlinear Anal,2010,72:2859-2862.
[2]Bai Z.On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Anal,2010,72:916-924.
[3]Ahmad B.Existence results for multi-point nonlinear boundary value problems of fractional differential equations[J].Mem Differ Equ Math Phys,2010,49:83-94.
[4]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier, 2006.
[5]Kosmatov N.A multi-point boundary value problem with two critical conditions[J].Nonlinear Anal,2006,65:622-633.
[6]Lakshmikantham V,Leela S.Nagumo--type uniqueness result for fractional differential equations[J].Nonlinear Anal,2009,71: 2886-2889.
[7]Lakshmikantham V,Leela S.A Krasnoselskii-Krein-type uniqueness result for fractional differential equations[J].Nonlinear Anal,2009,71:3421-3424.
[8]Lakshmikantham V,Vatsala A S.Theory of fractional differential inequalities and applications[J].Commun Appl Anal,2007,11: 395-402.
[9]Lakshmikantham V,Vatsala A S.Basic theory of fractional differential equations[J].Nonlinear Anal,2008,69:2677-2682.
[10]Bai Z.On Positive Solutions of a Nonlocal Fractional Boundary Value Problem[J].Nonlinear Anal,2010,72:916-924.
[11]Zhang Y,Bai Z.Existence of positive solutions for s nonlinear fractional three-point boundary value problems at resonance[J].Appl Math Comput,2011,36:417-440.
[12]PODLUBN Y I.Fractional Differential Equations,Mathematics in Science and Engineering[M].New York:Academic Press,1999.
[13]Bai Z,Lu H.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311:495-505.
[14]Bai Z,Zhang Y.The existence of solutions for a fractional multi-point boundary value problem[J].J Appl Math Comput,2010, 60:2364-2372.
[15]Su X.Boundary value problem for a coupled system of nonlinear fractional differential equations[J].Appl Math Lett,2009,22: 64-69.
[16]Bai Z,Qiu T.Existence of positive solution for singular fractional differential equation[J].Appl Math Lett,2009,215:2761-2767. [17]馬如云.非線性微分方程非局部問(wèn)題[M].北京:科學(xué)出版社,2004.
Problem for Fractional Differential Equation
ZHANG Jin-ling1,2,ZHANG Fu-zhen1,3
(1.College of Science,China University of Mining and Technology,Xuzhou 221008,China; 2.Department of Math and Physics,Xuzhou Normal School,Xuzhou 221116,China; 3.Advanced Math Teaching and Research Office,Jiuzhou College of Vocational&Technology,Xuzhou 221116,China)
This paper discussed the existence of positive solution for a singular boundary value problem for frac?tional differential equation by using nonlinear alternative of Leray–Schauder type and Krasnoselskii’s fixed point theorem in a cone.
nonlinear alternative;fixed point theorem;singular boundary value problem;positive solution
O175.8
A
1008-2794(2011)08-0015-07
2011-5-19
張金陵(1974—),女,江蘇徐州人,徐州高等師范學(xué)校數(shù)理系講師,研究方向:微分方程.