李增利
1.西安電子科技大學(xué),陜西 西安 710071 2.陜西航空電氣有限責(zé)任公司,陜西 興平 713100
開關(guān)電源被廣泛的應(yīng)用于國防軍事,工業(yè)自動化,家用電氣等領(lǐng)域的電子系統(tǒng)中。隨著開關(guān)電源逐步向小型化、高頻化、高功率密度發(fā)展,用戶對開關(guān)電源的可靠性設(shè)計提出了更高的要求。溫升是影響開關(guān)電源可靠性的關(guān)鍵性因素,如何將熱量高效快速的導(dǎo)出,成為電源工程師的首要任務(wù)[1]。熱設(shè)計的好壞直接影響著開關(guān)電源的可靠性和壽命,因而熱設(shè)計是開關(guān)電源可靠性設(shè)計的重要環(huán)節(jié)。
本文以一個工作于密閉電源盒的開關(guān)電源為例,利用有限元軟件ANSYS對開關(guān)電源進行熱設(shè)計,來提高整個開關(guān)電源的散熱性能,使得開關(guān)電源的主要發(fā)熱器件的溫度控制在允許的范圍內(nèi),保證開關(guān)電源安全可靠的運行。
本文中開關(guān)電源為反激式,具有有源功率因數(shù)校正(APFC)環(huán)節(jié),主要發(fā)熱元件有開關(guān)管,整流二極管,大功率電阻,變壓器與電感等[2]。
首先利用ANSYS分析工作在空氣中開關(guān)電源的溫度分布情況。
1)環(huán)境溫度:25℃;
2)對流系數(shù):6W/m·K;
3)載荷:器件的生熱率(P為器件的發(fā)熱功率,V是器件等效熱源的體積)。
1)對于簡化線圈模型來說,由于線圈在實際中是由一圈一圈的漆包線繞制的,而且這樣的繞線也不規(guī)則,在模型建立中使用單一圓柱體來代替多圈的導(dǎo)體;
2)芯片熱源等效為長方體。
模型中有些部分的尺寸微小,如MOSFET的等效熱源,尺寸為13.8×8×0.2mm3。選用ANSYS軟件中的SOLIDTO單元.通過設(shè)置MSHKEY和MSHAPE兩個選項,完成對單元形狀的控制。在建立網(wǎng)格處理不規(guī)則體的時候,特別是連接處理后的非六面體的情況,采用退化的四面體單元進行網(wǎng)格劃分,可以通過設(shè)定ESIZE,LESIZE的大小來決定單元網(wǎng)格的大小,則模型網(wǎng)格單元數(shù)目為324532。
表1中是工作在空氣中開關(guān)電源的溫度分布情況。利用紅外熱像儀測得的溫度,與仿真的溫度值對照,相對誤差較小,具有很好的準(zhǔn)確性。實際上,此開關(guān)電源工作在一個封閉的電源盒內(nèi),內(nèi)部的空氣流動速度很慢,在理想狀態(tài)下,認為內(nèi)部空氣處于絕熱狀態(tài),幾乎不導(dǎo)熱。因而各器件的實際工作時溫度會更高。因此。為保證開關(guān)電源安全可靠的運行。必須采取有效的散熱措施,迅速的將電源盤內(nèi)部的熱量導(dǎo)出,降低主要熱源的溫度。
表1 仿真分析與試驗測量溫度對照表
如何尋找低熱阻通路來將熱最迅速導(dǎo)出是設(shè)計開關(guān)電源熱設(shè)計的關(guān)鍵問題,因為只有開關(guān)電源器件的結(jié)點溫度降低后,這樣才能避免高溫而導(dǎo)致開關(guān)電源可靠性下降的問題。此開關(guān)電源工作在一個封閉的電源盤內(nèi),由于工作環(huán)境特殊,不允許加風(fēng)扇,只能采取自然散熱的措施。其熱設(shè)計的內(nèi)容包括電源盤的內(nèi)部熱設(shè)汁和電源盤的外部熱設(shè)計。
通過設(shè)計將開關(guān)電源的前后級MOSFET,后級二級管,整流橋的溫度控制在60℃以內(nèi),變壓器的溫度低于65℃。
開關(guān)電源的電源盒內(nèi)部熱設(shè)計主要是調(diào)整器件布局和改變內(nèi)部介質(zhì)。
1)電路布局的熱設(shè)計
密封電源盤內(nèi)熱源的主要散熱途徑有以下幾個方面:首先,通過熱源經(jīng)盒內(nèi)介質(zhì)向殼體傳導(dǎo)的熱量,可以通過對流和輻射在殼體的表面將熱量發(fā)散到大氣中;其次,通過盒體內(nèi)部的介質(zhì)可以把熱量傳遞到其他部件上,這樣就可以形成溫度的疊加效應(yīng)。
所以,在設(shè)計過程中,在考慮不影響電路性能的情況下,應(yīng)該使得發(fā)熱部件盡可能分散,且在電路板邊緣分布,另外,固定在電源盒的導(dǎo)熱鋁板應(yīng)該與其相連。電路板的后邊緣則應(yīng)該放置前后級MOSFET和整流橋,與電源盒的側(cè)壁相連靠的是2mm的導(dǎo)熱鋁板;而電路板的前側(cè)邊緣放置后級二極管,同樣,電源盒的側(cè)壁相連靠的是同樣厚度的導(dǎo)熱鋁板
表2 開關(guān)電源電路布局調(diào)整前后溫度對照表/℃
表2是開關(guān)電源電路靠局調(diào)整前后的溫度對照表,通過表2可以得出如下結(jié)論:
首先,可以看出前后級的MOSFET、整流橋和后級二極管溫度都有明顯的降低變化,其主要的原因是因為由于低熱阻通路-導(dǎo)熱鋁板的存在,使得電路布局為這些器件與外殼之間存在這樣一種合理的通路,這樣就可以使得器件產(chǎn)生的熱量傳導(dǎo)到電源盒體,從而溫度梯度也得以降低。
其次,對于變壓器來說,溫度變化很小。通過內(nèi)部空氣傳導(dǎo)到電源盒的變壓器的熱量,在加上空氣的熱阻很大的原因,這樣可以認為在密閉條件較好的情況下的絕熱狀態(tài)。同時,最高結(jié)點溫度和環(huán)境溫度梯度也很大,這樣來說對于變壓器溫度沒有明顯的降低。
變壓器的溫度變化很小。這是因為變壓器的熱量主要通過內(nèi)部空氣傳導(dǎo)到電源盒,而空氣的熱阻很大,在密閉條件很好的情況下,可以認為處于絕熱狀態(tài)。變壓器的最高結(jié)點溫度與環(huán)境的溫度梯度很大,導(dǎo)致溫度沒有明顯的降低。所以盡管電路布局的調(diào)整改善了開關(guān)電源的溫度分布情況, 有些器件的還存在較高的溫度梯度,無法滿足安全可靠運行的要求。
2)電源盒內(nèi)部介質(zhì)的熱設(shè)計
熱量主要以傳導(dǎo)方式由內(nèi)部器件傳到電源盒,這一點可以從前面的電源盒內(nèi)熱源的散熱途徑獲得,經(jīng)過對流換熱的方式散發(fā)到空氣中。根據(jù)傳導(dǎo)散熱的原理,內(nèi)部介質(zhì)的導(dǎo)熱系數(shù)可以看做是影響電源盒內(nèi)部溫度梯度的主要因素,其中,由于介質(zhì)的導(dǎo)熱系數(shù)與內(nèi)部熱源的溫度梯度成反比的原因,說明了質(zhì)的導(dǎo)熱系數(shù)越大,內(nèi)部器件的溫度梯度就越小,熱源的結(jié)點溫度就越低。
根據(jù)開關(guān)電源主要器件溫度與內(nèi)部介質(zhì)的導(dǎo)熱系數(shù)的關(guān)系曲線可以得出如下的結(jié)論:
(1)器件的溫度和內(nèi)部介質(zhì)導(dǎo)熱系數(shù)變化成反比,并且基本上所有器件最終趨于同一溫度。
(2)變壓器的溫度曲線存在一定區(qū)別,表現(xiàn)在介質(zhì)導(dǎo)熱系數(shù)為1.2 W/m·K時有一定的上升,這可能是因為變壓器的溫度低于其他熱源的溫度,但是需要注意熱量具有從溫度高的流向溫度低物體的規(guī)律,這樣由于變壓器溫度相對較低時,當(dāng)存在其他熱源的影響,變壓器溫度也是可以理解的。
電源盒的壁厚和殼體表面肋片的設(shè)計構(gòu)成了電源盒的外部熱設(shè)計,需要注意,其表面的散熱方式為對流和輻射,這樣,根據(jù)流散熱的原理,表面散熱面積則是影響散熱的主要因素,其中,電源盒的表面散熱面積與外殼肋片的高度影響直接相關(guān)。
開關(guān)電源的傳導(dǎo)散熱主要受到電源盒的壁厚的影響,同時,電源盒表面的對流散熱則受到外殼的肋片高度影響。因此,對于多熱源的封閉盒體來說,在限定電源盒尺的條件下,外殼的肋片高度對于散熱的影響一般大于壁厚的影響,所以對于封閉盒體來說,主要的散熱形式為表面的對流散熱,這樣能有效的散發(fā)熱量,降低盒體內(nèi)部器件的結(jié)點溫度。
所以根據(jù)上述結(jié)果分析可知,對于電源熱設(shè)計中需要采用內(nèi)部灌膠,而對于主要發(fā)熱器件來說則需要通過導(dǎo)熱鋁板與電源盒外殼相連,同時采取電源盒外殼加肋片的綜合散熱措施,這樣可以有效控制開關(guān)電源溫度,達到預(yù)定目標(biāo),從而滿足設(shè)計要求。
本文開共電源因其工作環(huán)境的要求,限制了散熱措施的選擇。在只能采取自然散熱措施,且功耗很大,電源盒的尺寸和重量受到嚴(yán)格限制的條件下,分別對電路板和電源盒的結(jié)構(gòu)進行了熱設(shè)計,尋找一種有效的散熱措施,降低了主要器件的溫度,提高開關(guān)電源的可靠性,延長了壽命。
[1]余明楊,蔣新華,王莉,等.開關(guān)電源的建模與優(yōu)化設(shè)計研究[J].中國電機工程學(xué)報,2006,26(2).
[2]姬海寧,蘭中文,張懷武,等.基于ANSYS的開關(guān)電源變壓器熱模擬研究[J].磁性材料及器件,2006,37(4).