徐 飛 馬國東
(1.浙江工業(yè)大學(xué)體育科學(xué)研究所,浙江杭州 310023;2.吉林體育學(xué)院運(yùn)動(dòng)人體科學(xué)系,吉林長春 130022)
熱應(yīng)激蛋白用于診斷和評(píng)價(jià)過度訓(xùn)練的研究進(jìn)展
徐 飛1馬國東2
(1.浙江工業(yè)大學(xué)體育科學(xué)研究所,浙江杭州 310023;2.吉林體育學(xué)院運(yùn)動(dòng)人體科學(xué)系,吉林長春 130022)
運(yùn)動(dòng)應(yīng)激可通過內(nèi)外感受器、傳入神經(jīng)通路或內(nèi)分泌系統(tǒng)支配、調(diào)節(jié)身體的適應(yīng)性恢復(fù)過程。當(dāng)運(yùn)動(dòng)員承受不了運(yùn)動(dòng)應(yīng)激引起的各種非特異性變化的總和時(shí)就可能出現(xiàn)過度訓(xùn)練。研究發(fā)現(xiàn),應(yīng)激時(shí)引起應(yīng)激蛋白(heat shock proteins,Hsps)的變化與機(jī)體運(yùn)動(dòng)疲勞和細(xì)胞損傷及修復(fù)程度有關(guān),且熱應(yīng)激蛋白與機(jī)體內(nèi)細(xì)胞內(nèi)穩(wěn)態(tài)密切相關(guān),提示熱應(yīng)激蛋白和過度訓(xùn)練存在一定的聯(lián)系。過度訓(xùn)練導(dǎo)致的熱應(yīng)激蛋白的變化可能是機(jī)體的內(nèi)源性保護(hù)機(jī)制。故本文在綜述運(yùn)動(dòng)應(yīng)激、過度訓(xùn)練和熱應(yīng)激蛋白變化間聯(lián)系的基礎(chǔ)上,探討并分析了骨骼肌Hsps對(duì)運(yùn)動(dòng)應(yīng)激和過度訓(xùn)練的表達(dá)及其相關(guān)機(jī)制。
運(yùn)動(dòng)應(yīng)激;熱休克蛋白;細(xì)胞損傷;運(yùn)動(dòng)疲勞;過度訓(xùn)練
運(yùn)動(dòng)應(yīng)激對(duì)身體的適應(yīng)性恢復(fù)進(jìn)行調(diào)節(jié)主要是通過刺激感受器、傳入神經(jīng)通路或內(nèi)分泌系統(tǒng)而實(shí)現(xiàn)[1,2]。研究已證實(shí)應(yīng)激蛋白對(duì)運(yùn)動(dòng)應(yīng)激會(huì)出現(xiàn)反應(yīng)性應(yīng)答:運(yùn)動(dòng)疲勞、細(xì)胞損傷與肌細(xì)胞內(nèi)穩(wěn)態(tài)與應(yīng)激蛋白都有密切聯(lián)系,眾多學(xué)者認(rèn)為這很可能是機(jī)體內(nèi)源性保護(hù)機(jī)制[3-6],有人甚至根據(jù)應(yīng)激蛋白的變化能反應(yīng)機(jī)體疲勞積累和細(xì)胞損傷修復(fù)的程度而認(rèn)為應(yīng)激蛋白和過度訓(xùn)練有關(guān),但目前相關(guān)機(jī)制仍不明確,故本文在現(xiàn)有相關(guān)研究結(jié)果基礎(chǔ)上綜述了熱應(yīng)激蛋在診斷和評(píng)價(jià)過度訓(xùn)練方面的研究進(jìn)展及機(jī)制,以期為一線的教練員、運(yùn)動(dòng)員和相關(guān)科研人員提供參考。
應(yīng)激(Stress)是指功能活動(dòng)或損傷作引起的所有非特異性變化的總和。包括應(yīng)激作用終止(恢復(fù))或繼續(xù)作用(適應(yīng))的復(fù)原[1,7]。對(duì)運(yùn)動(dòng)員而言,應(yīng)激反應(yīng)在日常訓(xùn)練、比賽中反復(fù)出現(xiàn),其機(jī)體處于高度應(yīng)激狀態(tài)中[2,8]。而過度訓(xùn)練(Overtraining)一直是教練員和運(yùn)動(dòng)員高度重視但難以把握的一個(gè)問題,因?yàn)橐坏┰斐蛇^度訓(xùn)練,輕則僅影響運(yùn)動(dòng)成績,重則可導(dǎo)致成運(yùn)動(dòng)員退役甚至對(duì)機(jī)體造成更多危害[8,9]。運(yùn)動(dòng)應(yīng)激主要通過內(nèi)外感受器、傳入神經(jīng)通路或內(nèi)分泌系統(tǒng)調(diào)節(jié)機(jī)體的適應(yīng)過程[10]。而當(dāng)運(yùn)動(dòng)員承受不了運(yùn)動(dòng)應(yīng)激引起的各種非特異性變化的總和時(shí)(疲勞積累、社會(huì)壓力、人際關(guān)系、心理原因等),就可能造成過度訓(xùn)練或出現(xiàn)過度訓(xùn)練癥狀[7,8]。應(yīng)激學(xué)說的研究重點(diǎn)是內(nèi)分泌系統(tǒng)“垂體—腎上腺皮質(zhì)—性腺軸”涉及到的眾多激素[9],因?yàn)檫@些激素通過改變酶活性、細(xì)胞膜通透性而提高機(jī)體能源儲(chǔ)備動(dòng)員能力、提高能量供應(yīng)和機(jī)體調(diào)節(jié)能力(包括酶和結(jié)構(gòu)蛋白增加)以及提高免疫力和內(nèi)環(huán)境的穩(wěn)定等。
過度訓(xùn)練是指運(yùn)動(dòng)員長時(shí)間訓(xùn)練導(dǎo)致的身體疲勞和機(jī)能下降不能在短時(shí)間內(nèi)恢復(fù),使其疲勞癥狀不斷加重且運(yùn)動(dòng)成績下降[2,8,11];Lehman認(rèn)為過度訓(xùn)練是訓(xùn)練和恢復(fù)、運(yùn)動(dòng)與運(yùn)動(dòng)能力、應(yīng)激與應(yīng)激耐受力間的失衡狀態(tài)[12],過度訓(xùn)練是繼發(fā)于運(yùn)動(dòng)訓(xùn)練的應(yīng)激反應(yīng),其分為交感性和副交感型,生理機(jī)制尚不完全清楚[11]。當(dāng)前的研究主要集中在過度訓(xùn)練與內(nèi)分泌紊亂、免疫抑制和自主神經(jīng)系統(tǒng)紊亂方面[1,11,13]。
但過度訓(xùn)練是多種應(yīng)激累積的結(jié)果,通常由生理和心理混合因素造成,所以目前尚無較為可靠的診斷指標(biāo)。鑒于過度訓(xùn)練對(duì)運(yùn)動(dòng)成績和健康的影響,預(yù)防和提前診斷是防治的重點(diǎn)[11,12],目前診斷和評(píng)價(jià)指標(biāo)多采用內(nèi)分泌激素和血清酶活性相關(guān)指標(biāo),如血清和尿中兒茶酚胺、血清睪酮、皮質(zhì)醇及T/C比值、血清CK、LDH等的變化情況[11,13];但單一血液指標(biāo)幾乎不能真實(shí)反應(yīng)運(yùn)動(dòng)員綜合疲勞積累的情況,而全面測(cè)試血液激素和血清酶活性共需20-30ml血液且反饋結(jié)果較為滯后[13],給教練員和醫(yī)務(wù)監(jiān)督人員造成不便。但從運(yùn)動(dòng)系統(tǒng)角度考慮,訓(xùn)練主要由骨骼肌執(zhí)行[14],若能從肌肉相關(guān)指標(biāo)尋找比現(xiàn)有指標(biāo)更敏感和有效的指標(biāo),對(duì)預(yù)防、診斷過度訓(xùn)練就有更為積極的作用。近年來運(yùn)動(dòng)應(yīng)激導(dǎo)致應(yīng)激蛋白的變化成為研究熱點(diǎn),有研究人員也認(rèn)為應(yīng)激蛋白的變化可用于診斷過度訓(xùn)練[15,16]。
熱應(yīng)激蛋白(Heat Shock Proteins,Hsps)是一組結(jié)構(gòu)高度保守的多肽,也稱熱休克蛋白。據(jù)分子量的大小(10-170KDa)可分為許多家族 ,如小 Hsps(Hsp20、泛素等)、Hsp40、Hsp60、Hsp70(Hsp72、Hsp73、Hsp75)等 ,其中 Hsp72 因其 N- 末端酶催化位點(diǎn)的ATPase活性,故其易被應(yīng)激誘導(dǎo)而合成[17]。晚近科研人員嘗試從分子水平、蛋白水平將其用于評(píng)價(jià)肌肉損傷和診斷早期過度訓(xùn)練[18]。
當(dāng)機(jī)體受到缺血、高溫和低氧等應(yīng)激時(shí),Hsp72在細(xì)胞內(nèi)迅速合成[17,19],其合成量能占應(yīng)激蛋白總量的20%[20]。因?yàn)榧?xì)胞受到應(yīng)激時(shí)新合成的Hsp72先轉(zhuǎn)位到核內(nèi),隨后聚集在核糖體前體顆粒區(qū)域附近[21],研究證實(shí)細(xì)胞核基質(zhì)蛋白中含有Hsp72,提示Hsp72可能支撐并保護(hù)細(xì)胞核骨架[17],而胞漿中的Hsp72與其他蛋白結(jié)合,最終通過某種途徑防御并修復(fù)各種應(yīng)激對(duì)細(xì)胞的損傷[18,21]。在應(yīng)激后的恢復(fù)期,細(xì)胞核內(nèi)的Hsp72重新回到胞漿與中心體、微管蛋白重新裝配,最終重新分配胞漿中的核糖體[22]。應(yīng)激恢復(fù)后細(xì)胞生長過程中,Hsp72主要呈現(xiàn)為前體肽鏈的未折疊狀態(tài),以確??缒まD(zhuǎn)運(yùn)或蛋白轉(zhuǎn)位,或解聚Hsp72結(jié)合折疊的錯(cuò)誤目標(biāo)蛋白,最終轉(zhuǎn)位至過氧化酶體和溶酶體而實(shí)現(xiàn)其功能[17]。
運(yùn)動(dòng)應(yīng)激導(dǎo)致的肌細(xì)胞功能紊亂或損傷加劇Hsp72合成(見表1),而大運(yùn)動(dòng)量、大強(qiáng)度訓(xùn)練時(shí)不同類型的運(yùn)動(dòng)方式(耐力訓(xùn)練或抗阻訓(xùn)練)對(duì)Hsp72的影響目前仍無定論。Thompson等[23]發(fā)現(xiàn)普通健康受試者肘關(guān)節(jié)極限強(qiáng)度離心收縮后,肱二頭肌細(xì)胞Hsp72含量增加1064%。原有觀點(diǎn)認(rèn)為肌肉離心收縮后24-48h損傷最為嚴(yán)重,實(shí)驗(yàn)證實(shí)離心運(yùn)動(dòng)誘導(dǎo)骨骼肌細(xì)胞內(nèi)Hsp72大量合成,提示運(yùn)動(dòng)應(yīng)激誘導(dǎo)的Hsp72合成量可能與肌肉疲勞、損傷程度有關(guān)。從另一個(gè)角度而言,運(yùn)動(dòng)應(yīng)激誘導(dǎo)的肌肉Hsp72合成對(duì)是否有助于防止運(yùn)動(dòng)損傷?McArdle等初步證實(shí)Hsp72可能對(duì)肌肉起保護(hù)作用[24]。Smolka等[25]對(duì)比訓(xùn)練8周的大鼠和對(duì)照組在跑臺(tái)上跑至力竭,發(fā)現(xiàn)實(shí)驗(yàn)組大鼠比目魚肌抗氧化酶濃度較高,Hsp72濃度沒有變化;而對(duì)照組大鼠Hsp72合成大幅度增加、蛋白氧化損傷程度顯著高于實(shí)驗(yàn)組,其比目魚肌中的抗氧化酶濃度無顯著變化,提示Hsp72與運(yùn)動(dòng)損傷后肌細(xì)胞的修復(fù)有關(guān),也證實(shí)了McArdle的觀點(diǎn)。更有意義的是發(fā)現(xiàn)長時(shí)間大強(qiáng)度運(yùn)動(dòng)誘導(dǎo)的Hsp72升高能防止細(xì)胞損傷,Liu等[26]發(fā)現(xiàn)CK(骨骼肌細(xì)胞損傷指標(biāo))在運(yùn)動(dòng)初始就升高,但隨著細(xì)胞內(nèi)Hsp72合成增加的量成反比,提示Hsp72的持續(xù)合成可能與長時(shí)間大強(qiáng)度訓(xùn)練加劇的疲勞損傷程度有關(guān)。Banfi等[16]發(fā)現(xiàn)優(yōu)秀足球運(yùn)動(dòng)員血漿Hsp70水平與抗氧化指標(biāo)變化趨勢(shì)一直,都顯著高于普通人,其認(rèn)為Hsp70能反應(yīng)出機(jī)體的疲勞狀態(tài)。綜上,Hsp與過度訓(xùn)練可能有內(nèi)在聯(lián)系,因?yàn)槠鋮⑴c了運(yùn)動(dòng)損傷的清除和修復(fù)過程,可考慮用于評(píng)價(jià)高水平運(yùn)動(dòng)員訓(xùn)練。
表1 運(yùn)動(dòng)后人體外周血中熱休克蛋白(Hsp72)的變化情況
3.3.1 骨骼肌 Hsps對(duì)運(yùn)動(dòng)應(yīng)激和過度訓(xùn)練的表達(dá)
諸多研究都證實(shí)人體骨骼肌Hsps和運(yùn)動(dòng)應(yīng)激、疲勞積累的關(guān)系密切,有人認(rèn)為大強(qiáng)度運(yùn)動(dòng)才能誘導(dǎo)人骨骼肌Hsp72表達(dá)[37],Liu等研究發(fā)現(xiàn),10名優(yōu)秀劃船運(yùn)動(dòng)員以4 mmol/L乳酸的無氧閾訓(xùn)練4周,股側(cè)肌 Hsp70分別增加了181%、405%、456%、363%[38],提示骨骼肌 Hsp70表達(dá)量取決于運(yùn)動(dòng)強(qiáng)度[38]。但總的來看,骨骼肌內(nèi)Hsp72表達(dá)呈現(xiàn)負(fù)荷依賴性而非強(qiáng)度依賴性(表1)。一次性大度離心運(yùn)動(dòng)后48 h肱二頭肌活檢發(fā)現(xiàn),運(yùn)動(dòng)肌HSC/Hsp70顯著高于對(duì)照肌,無訓(xùn)練經(jīng)歷者肱二頭肌大強(qiáng)度離心收縮,48 h后活檢發(fā)現(xiàn)Hsp70增加227%,Hsp70 mRNA水平增加128%[39]。Khassaf等[37]讓受試者作 70%V·O2max單腿踏車 45 min 后 ,分別在 1、2、3、6天作股側(cè)肌活檢,到第6天Hsp70才顯著增加。提示運(yùn)動(dòng)應(yīng)激誘導(dǎo)骨骼肌細(xì)胞中Hsp70表達(dá)與肌肉損傷的修復(fù)和肌肉損傷修復(fù)后骨骼肌細(xì)胞的重塑有關(guān)。
Naito等[40]認(rèn)為,運(yùn)動(dòng)導(dǎo)致的肌組織 Hsp72高表達(dá)彌補(bǔ)了低表達(dá) Hsp72的不足,保護(hù)了肌組織免受有害應(yīng)激的損傷。研究報(bào)道[19]SD大鼠以24 m/min速度運(yùn)動(dòng)后,其心肌、腓腸肌紅肌Hsp70顯著增高,但腓腸肌白肌Hsp70在跑速達(dá)27m/min才升高,而比目魚肌Hsp70在15m/min時(shí)就升高,到最大速度33m/min時(shí)反而下降。大鼠長期大負(fù)荷訓(xùn)練后腓腸肌白肌Hsp72表達(dá)最高,腓腸肌紅肌次之,比目魚肌表達(dá)最低,與其基礎(chǔ)值呈反比。以上各部位肌肉的肌纖維類型和募集方式都不同,推測(cè)骨骼肌Hsps的表達(dá)與肌肉募集方式、運(yùn)動(dòng)強(qiáng)度以及肌纖維類型有關(guān)[41]。Zoppi(2008)[15]通過大鼠8周Overreaching(訓(xùn)練過度)模型發(fā)現(xiàn),比目魚肌、趾長伸肌和半腱肌Hsp72顯著升高,但隨后的3周大強(qiáng)度耐力訓(xùn)練后只有比目魚肌Hsp72升高,從而證實(shí)了以上理論假設(shè)和初步結(jié)論。此項(xiàng)研究初步將Hsp72用于診斷過度訓(xùn)練,雖然還有諸多問題,但是做出了非常有價(jià)值的嘗試。
3.3.2 骨骼肌Hsps對(duì)疲勞積累和過度訓(xùn)練表達(dá)的可能機(jī)制
Hsps是骨骼肌細(xì)胞的組成部分,其能抵御多種應(yīng)激攻擊機(jī)體組織細(xì)胞、增強(qiáng)機(jī)體適應(yīng)能力。當(dāng)機(jī)體適應(yīng)應(yīng)激能力增強(qiáng)時(shí)Hsps也作出相應(yīng)應(yīng)答。所以當(dāng)機(jī)體細(xì)胞在應(yīng)激時(shí)為保護(hù)細(xì)胞免受損傷,組織只有下調(diào)細(xì)胞Hsps基礎(chǔ)值(Hsps受合成量和基礎(chǔ)值的限制)才能大量合成;而疲勞積累和過度訓(xùn)練時(shí)引起的損傷超出Hsp保護(hù)范圍時(shí),意味著細(xì)胞損傷與修復(fù)失衡,此假說在診斷和評(píng)價(jià)過度訓(xùn)練時(shí)有重要價(jià)值[15]。
理論推測(cè),Hsp72在損傷、修復(fù)失衡的細(xì)胞中的表達(dá)極可能有別于正常細(xì)胞。Liu等[18]發(fā)現(xiàn)缺血性肌病患者安靜狀態(tài)下腓腸肌細(xì)胞中 Hsp72大量合成;另一種肌病患者肌細(xì)胞Hsp72合成量隨病情的減輕而遞減[17],這也提示過度訓(xùn)練可能導(dǎo)致細(xì)胞Hsp72異常表達(dá),這不僅反映出細(xì)胞的應(yīng)激程度,也提示Hsp72作為評(píng)價(jià)應(yīng)激程度的可行性。綜上,細(xì)胞中Hsps高表達(dá)一方面可能起保護(hù)作用,另一方面其表達(dá)異常也指示細(xì)胞的機(jī)能紊亂。而研究表明細(xì)胞內(nèi)穩(wěn)態(tài)失衡是過度訓(xùn)練的成因之一[42],提示其可能作為診斷和評(píng)價(jià)過度訓(xùn)練的指標(biāo)。但目前尚缺乏足夠的直接證據(jù)支持,因?yàn)樯袥]有廣泛認(rèn)可的關(guān)于多元、多因素應(yīng)激造成的過度訓(xùn)練等效模型,而因人體實(shí)驗(yàn)受人道主義和其他客觀條件的限制,也不能真正造成運(yùn)動(dòng)員過度,這也是過度訓(xùn)練受到質(zhì)疑、診斷評(píng)價(jià)指標(biāo)難以有效確立的重要原因之一。
在細(xì)胞水平,轉(zhuǎn)錄和翻譯步驟決定機(jī)體應(yīng)激時(shí)Hsps的合成水平,目前認(rèn)為轉(zhuǎn)錄步驟是制約其合成的關(guān)鍵[43]。Hsp72轉(zhuǎn)錄主要受熱休克轉(zhuǎn)錄因子1(HSF1)的調(diào)節(jié),它能識(shí)別熱休克反應(yīng)元件(HSE)的靶序列。HSE是高度保守的順式反應(yīng)元件,位于 Hsp基因的編碼區(qū)上游,由重復(fù)的 5’-nGAAn-3’核心序列組成,此序列是與 HSF1的結(jié)合域[17]。細(xì)胞安靜狀態(tài)Hsp72與HSF1結(jié)合成的單體無活性,其含量很低;蛋白正常的三維結(jié)構(gòu)被應(yīng)激造成的細(xì)胞蛋白損傷時(shí)所改變,暴露出與Hsp72有高度親和性的疏水性位點(diǎn),使Hsp72脫離無活性單體并與損傷蛋白結(jié)合,使HSF1成為游離單體;游離HSF1單體隨即轉(zhuǎn)化成有活性的三倍體,隨后轉(zhuǎn)位到細(xì)胞核內(nèi)與HSE結(jié)合進(jìn)行Hsp72基因轉(zhuǎn)錄[44],從而造成骨骼肌細(xì)胞內(nèi)Hsps表達(dá)量增高。
普遍認(rèn)為過度訓(xùn)練是各種應(yīng)激導(dǎo)致的疲勞積累與恢復(fù)失衡造成的,運(yùn)動(dòng)應(yīng)激誘導(dǎo)骨骼肌細(xì)胞中Hsp合成,關(guān)聯(lián)損傷的修復(fù)和肌肉重塑過程。而Hsps能抵御有害應(yīng)激損傷細(xì)胞,并維持細(xì)胞穩(wěn)態(tài),這可能是機(jī)體的內(nèi)源性保護(hù)機(jī)制。也提示Hsps和過度訓(xùn)練存在一定的聯(lián)系。但這方面的研究才起步,將Hsps用于診斷、評(píng)價(jià)過度訓(xùn)練及其有效性尚需更多的研究證實(shí)。此外,Milne(2008)[45]發(fā)現(xiàn)運(yùn)動(dòng)應(yīng)激后肌細(xì)胞Hsps的表達(dá)可能存在性別差異,這種差異是否存在還需進(jìn)一步證實(shí);若Hsps表達(dá)存在性別差異,將 Hsps用于診斷、評(píng)價(jià)過度訓(xùn)練時(shí)如何定量分型是后續(xù)研究必需考慮的問題。
研究還發(fā)現(xiàn)Hsps是分子伴侶且與MAPK形成信號(hào)競爭機(jī)制而拮抗MAPK信號(hào)轉(zhuǎn)導(dǎo)[19],這提示Hsps在內(nèi)源性保護(hù)細(xì)胞的同時(shí)也可能阻礙細(xì)胞的生長,而且其也可能在肌細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)方面有特殊作用。
[1]White LJ,Castellano V.Exercise and Brain Health-Implications for Multiple Sclerosis:Part II-Immune Factors and Stress Hormones[J].SportsMed,2008,38(3).
[2]王耀光,徐飛,賀業(yè)恒.女運(yùn)動(dòng)員三重綜合征與過度訓(xùn)練研究綜述[J].北京體育大學(xué)學(xué)報(bào),2007,30(3).
[3]Fehrenbach E,Niess AM,Voelker K,etal.Exercise intensity and duration affect blood soluble HSP72[J].Int JSportsMed,2005,26(7).
[4]Marshall HC,Ferguson RA,Nimmo MA.Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot,humid environment[J].Cell Stress Chaperones,2006,11(2).
[5]Ruell PA,Thompson MW,Hoffman KM,et al.Plasma Hsp72 is higher in runners with more serious symptoms of exertional heat illness[J].Eur J Appl Physiol,2006,97(6).
[6]Powers SK,M LA,Demirel HA.Exercise,heat shock proteins,and myocardial protection from I-R injury[J].Med Sci Sports Exerc,2001,33(3).
[7]徐飛.用血氨作為監(jiān)控短時(shí)大強(qiáng)度運(yùn)動(dòng)有效指標(biāo)的實(shí)驗(yàn)研究[D].大連:遼寧師范大學(xué)碩士學(xué)位論文,2007.
[8]徐飛,夏志.過度訓(xùn)練與女運(yùn)動(dòng)員膳食紊亂、月經(jīng)不調(diào)和骨質(zhì)疏松間的關(guān)系與機(jī)制探討[J].首度體育學(xué)院學(xué)報(bào),2006,18(5).
[9]Meeusen R,Watson P,Hasegawa H,et al.Brain neurotransmitters in fatigue and overtraining[J].Appl Physiol Nutr Metab,2007,32(5).
[10]徐飛.對(duì)Plymetrics問題的再探究[J].天津體育學(xué)院學(xué)報(bào),2007,22(1).
[11]Halson SL,Jeukendrup AE.Does overtraining exist?An analysis of overreaching and overtraining research[J].SportsMed,2004,34(14).
[12]Lehmann M,Foster C,Keul J.Overtraining in endurance athletes:a brief review[J].Med Sci Sports Exerc,1993,25(7).
[13]Petibois C,Cazorla G,Poortmans JR,et al.Biochemical aspects of overtraining in endurance sports:the metabolism alteration process syndrome[J].SportsMed,2003,33(2).
[14]徐飛,趙恒,吳健.力竭性“拉長—縮短周期”運(yùn)動(dòng)中離心收縮和相信收縮階段肌肉疲勞和損傷及下肢主要關(guān)節(jié)用力特征研究[J].北京體育大學(xué)學(xué)報(bào),2008,31(10).
[15]Zoppi CC,Macedo DV.Overreaching-induced oxidative stress,enhanced HSP72 expression,antioxidant and oxidative enzymes downregulation[J].Scand JMed Sci Sports,2008,18(1).
[16]Banfi G,Malavazos A,Iorio E,et al.Plasma oxidative stress biomarkers,nitric oxide and heat shock protein 70 in trained elite soccer players[J].Eur JAppl Physiol,2006,96(5).
[17]Snoeckx LH,Cornelussen RN,Van Nieuwenhoven FA,et al.Heat shock proteins and cardiovascular pathophysiology[J].Physiol Rev,2001,81(4).
[18]Liu Y,Steinacker JM.Changes in skeletal muscle heat shock proteins:pathological significance[J].Front Biosci,2001,6(2).
[19]Smith LL.Cytokine hypothesis of overt raining:a physiological adaptation to excessive stress?[J].Med Sci Sports Exerc,2000,32(2).
[20]Donati YR,Slosman DO,Polla BS.Oxidative injury and the heat shock response[J].Biochem Pharmacol,1990,40(12).
[21]Welch WJ,Feramisco JR.Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells[J].JBiol Chem,1984,259(7).
[22]Welch WJ,Suhan JP.Cellular and biochemical events in mammalian cells during and after recovery from physiological stress[J].JCell Biol,1986,103(5).
[23]Thompson HS,Scordilis SP,Clarkson PM,et al.A single bout of eccentric exercise increases HSP27 and HSC/HSP70 in human skeletal muscle[J].Acta Physiol Scand,2001,171(2).
[24]McArdle F,Spiers S,Aldemir H,etal.Preconditioning of skeletal muscle against contraction-induced damage:the role of adaptations to oxidants inmice[J].J Physiol,2004,561(1).
[25]SmolkaMB,Zoppi CC,Alves AA,et al.HSP72 as a complementary protection against oxidative stress induced by exercise in the soleusmuscle of rats[J].Am J Physiol Regul Integr Comp Physiol,2000,279(5).
[26]Liu Y,Mayr S,Opitz-Gress A,et al.Human skeletal muscle HSP70 response to training in highly trained rowers[J].JAppl Physiol,1999,86(1).
[27]Febbraio MA,Ott P,Nielsen HB,et al.Exercise induces hepatosplanch-nic release of heat shock protein 72 in humans[J].J Physiol,2002,544(3).
[28]Febbraio MA,Steensberg A,Walsh R,etal.Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle[J].J Physiol,2002,538(3).
[29]Febbraio MA,Mesa JL,Chung J,etal.Glucose ingestion attenuates the exer-cise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans[J].Cell Stress Chaperones,2004,9(4).
[30]Fischer CP,Hiscock NJ,Basu S,etal.Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans[J].JAppl Physiol,2006,100(5).
[31]Lancaster GI,Moller K,Nielsen B,et al.Exercise induces the release of heat shock protein 72 from the human brain in vivo[J].Cell Stress Chaperones,2004,9(3).
[32]Peake JM,Suzuki K,Hordern M,et al.Plasma cytokine changes in relation to exercise intensity and muscle damage[J].Eur J Appl Physiol,2005,95(56).
[33]Walsh RC,Koukoulas I,Garnham A,et al.Exercise increases serum Hsp72 in humans[J].Cell Stress Chaperones,2001,6(4).
[34]Whitham M,Laing S,Jackson A,et al.Effects of Prolonged Exercise with and without a Thermal Clamp on Extracellular Hsp72 Concentration[J].Med Sci Sports Exerc,2006,38(1).
[35]Whitham M,Walker GJ,Bishop NC.Effect of caffeine supplementation on the extracellular heat shock protein 72 response to exercise[J].JAppl Physiol,2006,101(4).
[36]Whitham M,FortesMB.Effect of blood handling on extracellular Hsp72 concentration after high-intensity exercise in humans[J].Cell Stress Chaperones,2006,11(4).
[37]Khassaf M,Child RB,McArdle A,et al.Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise[J].J Appl Physiol,2001,90(3).
[38]Liu Y,LormesW,Baur C,et al.Human skeletal muscle HSP70 response to physical training depends on exercise intensity[J].Int J Sports Med,2000,21(5).
[39]Milne KJ,Noble EG.Exercise-induced elevation of HSP70 is intensity dependent[J].J Appl Physiol,2002,93(2).
[40]Naito H,Powers SK,Demirel HA,et al.Exercise training increases heat shock protein in skeletal muscles of old rats[J].Med Sci Sports Exerc,2001,33(5).
[41]Lehmann M,Foster C,Dickhuth HH,et al.Autonomic imbalance hypothesis and over training syndrome[J].Med Sci Sports Exerc,1998,30(7).
[42]Liu Y,Lormes W,Wang L,et al.Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training[J].Eur JAppl Physiol,2004,91(23).
[43]Morimoto RI,Sarge KD,Abravaya K.Transcriptional regulation of heat shock genes.A paradigm for inducible genomic responses[J].J Biol Chem,1992,267(31).
[44]Thompson HS,Clarkson PM,Scordilis SP.The repeated bout effect and heat shock proteins:intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans[J].Acta Physiol Scand,2002,174(1).
[45]Milne KJ,Noble EG.Response of the myocardium to exercise:sex-specific regulation of hsp70[J].Med Sci Sports Exerc,2008,40(4).
The Research Development of Diagnosing and Evaluating the Overtraining by Heat Shock Proteins
Xu Fei1,Ma Guodong2
(1.Institute of Sports Science Research,Zhengjiang University of Technology,Hangzhou,310023,Zhejiang,China;2.Department of Human Morement Science,Institute of Jilin Physical Education,Changchun,130022,Jilin,China)
Exercise stress can regulate the body recovery process adaptability by both inside and outside receptors ,afferent pathways or endocrine system control.When the athletes could not bear exercise stress caused by the sum of non - specific changes may lead to overtraining syndrome. The up - regulation of stress protein (heat shock proteins ,Hsps) changes caused by stress can reflect the fatigue accumulation and repair of cell damage indicate that there are certain links between Hsps and overtraining. The responses and adaptations of Hsps on the fatigue ,cell damage are closely related with muscle homeostasis and rehabilitation. And it is one of endogenous protection mechanisms. The authors review the relationship of exercise stress ,overtraining and heat shock proteins.Also ,analyze the expression of Hsps on exercise and overtraining and discuss the possible mechanisms.
exercise stress;heat shock proteins;cell damage;exercise fatigue;overtraining
G804.5
A
1672-1365(2011)04-0012-04
2011-02-13;
2011-04-20
徐飛(1981-),男,重慶人,博士,講師,研究方向:運(yùn)動(dòng)機(jī)能評(píng)定。