国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Extensions of Reduced Rings

2011-12-22 07:35WUHuifeng
關鍵詞:冪級數(shù)約化環(huán)上

WU Hui-feng

(College of Science,Hangzhou Normal University,Hangzhou 310036,China)

Extensions of Reduced Rings

WU Hui-feng

(College of Science,Hangzhou Normal University,Hangzhou 310036,China)

A ringRis a reduced ring,provided thata2=0implies thata=0.The paper discussed the relations between reduced rings and 3-Armendariz rings and proved that power series rings and some special upper triangular matrix rings of reduced rings are 3-Armendariz rings.

reduced ring;power series ring;3-Armendariz ring.

1 Introduction

Condition(P) For alla,b,c∈R,if(abc)2=0,thenabc=0.(see[1])

Proposition 1IfRis a reduced ring,thenRsatisfies the Condition(P),but the converse is not true.

ProofIt is easy to prove thatRis a reduced ring implies thatRsatisfies the Condition(P),there exists a ring that satisfies the Condition(P)but is not a reduced ring.Let

From[1],we know thatRis 3-Armendariz ring if and only ifR[x]is 3-Armendariz ring.Clearly,all subrings of 3-Armendariz rings are 3-Armendariz rings.IfR[[x]]is a 3-Armendariz ring,thenR[x]is a 3-Armendariz ring,but the converse is not true.

Theorem 1LetRbe a reduced ring,thenR[[x]]is a 3-Armendariz ring.

Corollary 1IfRis a reduced ring,thenR[x]is a 3-Armendariz ring.

Theorem 2LetRbe a reduced ring,then is a 3-Armendariz ring.

ProofIt is well know that for a ringRand any positive integern≥2,R[x]/(xn)≌S.where(xn)is the ideal ofR[x]generated byxn.It is evident thatR[x]/(xn)≌R′,R′is subring ofR[[x]],soR′≌S.SinceRis reduced ring,by Theorem 1,we knowR[[x]]is 3-Armendariz ring,moveover,subrings of 3-Armendariz rings are 3-Armendariz rings,soR′is a 3-Armendariz ring.ThereforeSis a 3- Armendariz ring and the proof is complete.

Theorem 3LetRbe a reduced ring,then

is a 3-Armendariz ring.

ProofSinceRis a reduced ring,thenRsatisfies the Condition(P),that is

InR,since(bca)2=bcabca=bc(abc)a=0,sobca=0.

We can denote their addition and multiplication by:

So every polynomial ofR[y]can be expressed by(f0(0),f0(y),f1(y)),wheref0(y),f1(y)∈R[x][y].For allf(y),g(y),h(y)∈R〈x〉[y],and

Iff(y)g(y)h(y)=0,we have the following system of equations:

If we multiply(3)on the right side byf0(y),then

Also if we multiply(3′)on the right side byg0(y),then

Thusf0(0)g0(0)h1(y)f0(0)g0(0)=0.So(f0(0)g0(0)h1(y))2=f0(0)g0(0)h1(y)f0(0)g0(0)h1(y)=0.SinceRa reduced ring,thenR[x]is a reduced ring,and thenR[x][y]is a reduced ring.Thereforef0(0)g0(0)h1(y)=0.Hencef0(0)g1(y)h0(y)f0(y)=0,sof0(0)g1(y)h0(y)f0(0)=0,it means that(f0(0)g1(y)h0(y))2=0,thenf0(0)g1(y)h0(y)=0.

And sof0(0)g0(0)h1(y)=f0(0)g1(y)h0(y)=f1(y)g0(y)h0(y)=0.

Write

and set

For all 0≤i≤r,0≤j≤s,0≤k≤t,we have

we knowR[x][y]is a reduced ring,soR[x][y]is a 3-Armendariz ring.Sincef0(0)g0(0)h0(0)=0,thenf1i(0)f2j(0)f3k(0)=0.Sincef0(y)g0(y)h0(y)=0,thenf1i(x)f2j(x)f3k(x)=0.Sincef0(0)g0(0)h1(y)=0,thenf1i(0)f2j(0)g3k(x)=0.Sincef0(0)g1(y)h0(y)=0,thenf1i(0)g2j(x)f3k(x)=0.Sincef1(y)g0(y)h0(y)=0,theng1i(x)f2j(x)f3k(x)=0.

Consequently

HenceR〈x〉is a 3-Armendariz ring.

Example 1Z2〈x〉is a 3-Armendariz ring,henceZ2〈x〉is a Armendariz ring whereZ2is the field with two elements.

ProofIn view of Theorem 3,Z2〈x〉is a 3-Armendariz ring.ButZ2〈x〉has an identity,and so it is a Armendariz ring.

[1]Yang Suiyi.On the extension of Armendariz rings[D].Lanzhou:Lanzhou University,2008:9-19.

[2]Anderson D D,Camillo V.Armendariz rings and Gaussian rings[J].Comm Algebra,1998,26(7):2265-2272.

[3]Rege M B.Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73:14-17.

[4]Hirano Y.On annihilator ideals of a polynomial ring over a non commutative ring[J].J Pure Appl Algebra,2002,168:45-52.

[5]Yan Zhanping.Armendariz property of a class of matrix rings[J].Journal of Northwest Normal University Natural Science,2003,39(3):22-24.

[6]Wang Wenkang.Armendariz and semicommutative properties of a class of upper triangular matrix rings[J].Journal of Shandong University:Natural science Edition,2008,43(2):62-65.

[7]Kim N K,Lee K H,Lee Y,Power series rings satisfying a zero divisor porperty[J].Comm Alg,2006,34:2205-2218.

約化環(huán)的推廣

伍惠鳳

(杭州師范大學理學院,浙江杭州 310036)

稱環(huán)R是約化環(huán),如果a2=0,那么a=0.討論了約化環(huán)和3-Armendariz環(huán)之間的關系,證明了不帶單位元的約化環(huán)上的冪級數(shù)環(huán)和某些特殊的上三角矩陣環(huán)是3-Armendariz環(huán).

約化環(huán);冪級數(shù)環(huán);3-Armendariz環(huán).

O153.3 MSC2010:16E99;14F99 Article character:A

1674-232X(2011)05-0407-04

10.3969/j.issn.1674-232X.2011.05.005

date:2011-03-18

Biography:Wu Hui-feng(1982—),famale,born in Anqing,Anhui province,master,engageed in Algebraic.E-mail:yaya57278570@163.com

猜你喜歡
冪級數(shù)約化環(huán)上
約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
冪級數(shù)的求和方法總結(jié)
主動脈瓣環(huán)擴大聯(lián)合環(huán)上型生物瓣膜替換治療老年小瓣環(huán)主動脈瓣狹窄的近中期結(jié)果
矩陣環(huán)的冪級數(shù)弱McCoy子環(huán)
冪級數(shù)J-Armendariz環(huán)*
交換環(huán)上四階反對稱矩陣李代數(shù)的BZ導子
取繩子
投射可遷環(huán)上矩陣環(huán)的若當同態(tài)
M-強對稱環(huán)
關于強冪級數(shù)McCoy環(huán)