史 杰,何中全
(西華師范大學 數(shù)學與信息學院,四川 南充 637009)
一類廣義混合變分不等式組解的強收斂定理*
史 杰,何中全
(西華師范大學 數(shù)學與信息學院,四川 南充 637009)
研究了Banach空間中一類廣義混合變分不等式組問題,引進了一種新的迭代算法,研究了由迭代算法生成的序列的收斂性,并得到了這類變分不等式組解的強收斂定理,從而推廣和改進了相關(guān)文獻的一些工作.
變分不等式組;迭代算法;投影算子;強收斂
MSC 2000:47H10
記上面的GMEPS的解集為GMEPS(F,G,A,B).
當F=G,A=B,F(xiàn)(x,y)=f(x,y)+φ(y)-φ(x),η(y,x)=y(tǒng)-x時,上面的GMEPS問題變?yōu)镚MEP問題,即求x∈C,使得f(x,y)+φ(y)-φ(x)+〈y-x,Ax〉≥0,?y∈C.GMEP問題在文獻[2]和[3]中已經(jīng)被研究.
下面給出本文所需的一些引理.
引理1[1]設(shè)E是嚴格凸且光滑的實自反Banach空間,C是E中非空閉凸集,令x∈E,那么對任意設(shè)E是Banach空間,E*是其對偶空間,正規(guī)對偶映射J∶E→2E*如下定義:的y∈C,有:
在本節(jié),我們將引進一個新的迭代算法,研究由此生成的序列的收斂性,得到了變分不等式組解的強收斂定理.相關(guān)工作推廣和改進了文獻[2]和文獻[3]的相關(guān)結(jié)果.
定理5 C是一致光滑且自反的實Banach空間中非空閉凸集.F,G∶C×C→R,滿足條件(A1)~(A4).映射η∶C×C→C滿足條件(B1)~ (B3),A,B∶C→E*是η-單調(diào)映射.{xn}是由算法W生成的序列.其中{rn},{sn}是[e,+∞)上序列,e>0,x0∈C0=C,設(shè)GMEPS(F,G,A,B)≠Φ,則{xn}強收斂到x*∈GMEPS(F,G,A,B).
證明 下面分四步進行證明.
第一步:證明算法W生成的序列是良定的,且GMEPS(F,G,A,B)?Cn.
易知Cn是C中非空閉凸集,則{xn}是良定的.設(shè)p∈GMEPS(F,G,A,B),由引理4和引理1得:
定理6 C是一致光滑且自反的實Banach空間中非空閉凸集.F,G∶C×C→R,滿足條件(A1)~(A4).映射η∶C×C→C滿足條件(B1)~(B2),A,B∶C→E*是η-單調(diào)映射,g∶E→C是連續(xù)映射.{xn}是由算法Q生成的序列.其中{rn},{sn}是[e,+∞)上序列,e>0,x0∈C0=C,設(shè)GMEPS(F,G,A,B,g)≠Φ.則{xn}強收斂到x*∈GMEPS(F,G,A,B,g).
證明方法同定理5.
[1]ZEGEYE H,Eric U,OFOEDU E U,et al.Convergence Theorems for Equilibrium Problem,Variotional Inequality Problemand Countably Infinite Relatively Quasi-nonexpansive Mappings[J].Appl Math Comput,2010,54:5.
[2]ZHANG S S.Generalized mixed equilibrium problem in Banach space[J].Applied Msthematics and Mechanics,2009,30:1105~1112.
[3]KUMAM W,JAIBOON C,KUMAM P,et al.A Shrinking Projection Method for Generalized Mixed Equilibrium Problems,Variational Inclusion Problems and a Finite Family of Quasi-Nonexpansive Mappings[J].Hindawi Publishing Corporation Journal of Inequalities and Applications,2010,2010:1~25.
[4]KAMIMURA S,TAKAHASHI W.Strong Convergence of Proximal-type Algorithm in a Banach Space[J].SIAM J,2002,13,938~945.
[5]ZEGEYE H,ERIC U,OFOEDU E U,et al.Convergence Theorems for Equilibrium Problem,Variotional Inequality Problemand Countably Infinite Relatively Quasi-nonexpansive Mappings[J].Appl Math Comput,2010,54:5.
MSC 2000:47 H10
Strong Convergence Theorem for a System of Generalized Mixed Variational Inequality
SHI Jie,HE Zhong-quan
(School of Mathematics and Information,China West Normal University,Nanchong 637009,China)
This paper,which introduces a new iteration algorithm and researches into the convergence of iterative sequence generated by the algorithm,is devoted to studying a new system of generalized mixed variational inequality in Banach spaces,from which we get the strong convergence theorems of the solution for this system of generalized mixed variational inequality.The results obtained in this paper extend corresponding works of others.
system of variational inequality;iteration algorithm;projection operator;strong convergence
O177.91
A
1009-1734(2011)02-0030-06
2011-03-04
四川省教育廳2009年度重點課題基金資助項目(07ZA123).
史杰,2009級在讀碩士,從事非線性分析研究.