国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

培養(yǎng)發(fā)散思維能力 促進(jìn)數(shù)學(xué)有效教學(xué)

2011-12-29 00:00:00顧福發(fā)
新課程·上旬 2011年6期


  在小學(xué)數(shù)學(xué)的教學(xué)過(guò)程中,有目的地培養(yǎng)與訓(xùn)練小學(xué)生數(shù)學(xué)發(fā)散性思維能力,這有利于有效提高小學(xué)數(shù)學(xué)課堂教學(xué)質(zhì)量。那么如何培養(yǎng)學(xué)生的發(fā)散思維能力呢?
  一、通過(guò)一題多解、變式引申的方式訓(xùn)練學(xué)生發(fā)散思維的廣闊性
  思維的廣闊性是發(fā)散思維的又一特征。思維的狹窄性表現(xiàn)在只知其一,不知其二,稍有變化,就不知所云。反復(fù)進(jìn)行一題多解、一題多變的訓(xùn)練,是幫助學(xué)生克服思維狹窄性的有效辦法??赏ㄟ^(guò)討論,啟迪學(xué)生的思維,開(kāi)拓解題思路,在此基礎(chǔ)上讓學(xué)生通過(guò)多次訓(xùn)練,既增長(zhǎng)了知識(shí),又培養(yǎng)了思維能力。教師在教學(xué)過(guò)程中,不能只重視計(jì)算結(jié)果,要針對(duì)教學(xué)的重難點(diǎn),精心設(shè)計(jì)有層次、有坡度,要求明確、題型多變的練習(xí)題。要讓學(xué)生通過(guò)訓(xùn)練不斷探索解題的捷徑,使思維的廣闊性不斷得到發(fā)展。要通過(guò)多次的漸進(jìn)式的拓展訓(xùn)練,使學(xué)生進(jìn)入廣闊思維的佳境。
  二、通過(guò)各種教學(xué)手段調(diào)動(dòng)學(xué)生的求知欲,訓(xùn)練發(fā)散思維的積極性
  思維的惰性是影響發(fā)散思維的障礙,而思維的積極性是思維惰性的克星。所以,培養(yǎng)思維的積極性是培養(yǎng)發(fā)散思維極其重要的基T5/rl1RsDax9TG+faIHBQg==礎(chǔ)。在教學(xué)中,教師要十分注意激起學(xué)生強(qiáng)烈的學(xué)習(xí)興趣和對(duì)知識(shí)的渴求,使他們能帶著一種高漲的情緒從事學(xué)習(xí)和思考。例如:在一年級(jí)《乘法初步認(rèn)識(shí)》一課中,教師可先出示幾道連加算式讓學(xué)生改寫(xiě)為乘法算式。由于有乘法意義的依托,雖然是一年級(jí)小學(xué)生,仍能較順暢地完成了上述練習(xí)。而后,教師又出示3+3+3+3+2,讓學(xué)生思考、討論能否改寫(xiě)成一道含有乘法的算式呢?經(jīng)過(guò)學(xué)生的討論與教師及時(shí)予以點(diǎn)撥,學(xué)生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……雖然課堂費(fèi)時(shí)多,但這樣的訓(xùn)練卻有效地激發(fā)了學(xué)生尋求新方法的積極情緒。我們?cè)跀?shù)學(xué)教學(xué)中還經(jīng)常利用“障礙性引入”“沖突性引入”“問(wèn)題性引入”“趣味性引入”等,以激發(fā)學(xué)生對(duì)新知識(shí)、新方法的探知思維活動(dòng),這將有利于激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī)和求知欲。在學(xué)生不斷地解決知與不知的矛盾過(guò)程中,還要善于引導(dǎo)他們一環(huán)接一環(huán)地發(fā)現(xiàn)問(wèn)題、思考問(wèn)題、解決問(wèn)題。例如,在學(xué)習(xí)“角”的認(rèn)識(shí)時(shí),學(xué)生列舉了生活中見(jiàn)過(guò)的角,當(dāng)提到墻角時(shí)出現(xiàn)了不同的看法。到底如何認(rèn)識(shí)呢?我讓學(xué)生帶著這個(gè)“謎”學(xué)完了角的概念后,再來(lái)討論認(rèn)識(shí)墻角的“角”可從幾個(gè)方向來(lái)看,從而使學(xué)生的學(xué)習(xí)情緒在獲得新知中始終處于興奮狀態(tài),這樣有利于思維活動(dòng)的積極開(kāi)展與深入探尋。
  三、轉(zhuǎn)化思想,訓(xùn)練學(xué)生發(fā)散思維的聯(lián)想性
  聯(lián)想思維是一種表現(xiàn)想象力的思維,是發(fā)散思維的顯著標(biāo)志。聯(lián)想思維的過(guò)程是由此及彼,由表及里。通過(guò)廣闊思維的訓(xùn)練,學(xué)生的思維可達(dá)到一定廣度,而通過(guò)聯(lián)想思維的訓(xùn)練,學(xué)生的思維可達(dá)到一定深度。例如有些題目,從敘述的事情上看,不是工程問(wèn)題,但題目特點(diǎn)確與工程問(wèn)題相同,因此可用工程問(wèn)題的解題思路去分析、解答。讓學(xué)生進(jìn)行多種解題思路的討論時(shí),有的解法需要學(xué)生用數(shù)學(xué)轉(zhuǎn)化思想,才能使解題思路簡(jiǎn)捷,既達(dá)到一題多解的效果,又訓(xùn)練了思路轉(zhuǎn)化的思想?!稗D(zhuǎn)化思想”作為一種重要的數(shù)學(xué)思想,在小學(xué)數(shù)學(xué)中有著廣泛的應(yīng)用。在應(yīng)用題解題中,用轉(zhuǎn)化方法,遷移深化,由此及彼,有利于學(xué)生聯(lián)想思維的訓(xùn)練。
  四、轉(zhuǎn)換思維角度,訓(xùn)練學(xué)生發(fā)散思維的求異性
  發(fā)散思維活動(dòng)的展開(kāi),其重要的一點(diǎn)是要能改變已習(xí)慣了的思維定向,而從多方位多角度——即從新的思維角度去思考問(wèn)題,以求得問(wèn)題的解決,這也就是思維的求異性。從認(rèn)知心理學(xué)的角度來(lái)看,小學(xué)生在進(jìn)行抽象的思維活動(dòng)過(guò)程中由于年齡的特征,往往表現(xiàn)出難以擺脫已有的思維方向,也就是說(shuō)學(xué)生個(gè)體(乃至于群體)的思維定勢(shì)往往影響了對(duì)新問(wèn)題的解決,以至于產(chǎn)生錯(cuò)覺(jué)。所以要培養(yǎng)與發(fā)展小學(xué)生的抽象思維能力,必須十分注意培養(yǎng)思維求異性,使學(xué)生在訓(xùn)練中逐漸形成具有多角度、多方位的思維方法與能力。例如,四則運(yùn)算之間是有其內(nèi)在聯(lián)系的。減法是加法的逆運(yùn)算,除法是乘法的逆運(yùn)算,加與乘之間則是轉(zhuǎn)換的關(guān)系。當(dāng)加數(shù)相同時(shí),加法轉(zhuǎn)換成乘法,所有的乘法都可以轉(zhuǎn)換成加法。加減、乘除、加乘之間都有內(nèi)在的聯(lián)系。如189-7可以連續(xù)減多少個(gè)7?應(yīng)要求學(xué)生變換角度思考,從減與除的關(guān)系去考慮。這道題可以看作189里包含幾個(gè)7,問(wèn)題就迎刃而解了。這樣的訓(xùn)練,既防止了片面、孤立、靜止地看問(wèn)題,使所學(xué)知識(shí)有所升華,從中進(jìn)一步理解與掌握了數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,又進(jìn)行了求異性思維訓(xùn)練。在教學(xué)中,我們還經(jīng)常發(fā)現(xiàn)一部分學(xué)生只習(xí)慣于順向思維,而不習(xí)慣于逆向思維。在應(yīng)用題教學(xué)中,在引導(dǎo)學(xué)生分析題意時(shí),一方面可以從問(wèn)題入手,推導(dǎo)出解題的思路;另一方面也可以從條件入手,一步一步歸納出解題的方法。更重要的是,教師要十分注意在題目的設(shè)置上進(jìn)行正逆向的變式訓(xùn)練。
 ?。ㄗ髡邌挝?江蘇省建湖縣實(shí)驗(yàn)小學(xué))

泰来县| 太仓市| 苏州市| 林口县| 二连浩特市| 滨海县| 即墨市| 阿拉善盟| 堆龙德庆县| 康乐县| 舒兰市| 清镇市| 行唐县| 宜兴市| 桂阳县| 穆棱市| 宁明县| 谢通门县| 同德县| 玉龙| 溧阳市| 石林| 仲巴县| 榕江县| 黄石市| 通榆县| 玉门市| 丹棱县| 扶绥县| 安新县| 惠水县| 翼城县| 崇州市| 林口县| 五华县| 瓦房店市| 阳新县| 天柱县| 达州市| 灵川县| 长葛市|