彭博,游園園,孫黎光
(中國(guó)醫(yī)科大學(xué)1.門(mén)診部,2.基礎(chǔ)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)教研室,遼寧沈陽(yáng)110001)
鉛暴露導(dǎo)致小鼠學(xué)習(xí)記憶功能障礙及海馬蛋白激酶B表達(dá)降低
彭博1,游園園2,孫黎光2
(中國(guó)醫(yī)科大學(xué)1.門(mén)診部,2.基礎(chǔ)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)教研室,遼寧沈陽(yáng)110001)
目的探討蛋白激酶B(PKB)在慢性鉛暴露所致小鼠學(xué)習(xí)記憶功能障礙中的作用。方法5~6周齡小鼠交配后,鉛暴露組仔鼠通過(guò)胎盤(pán)、乳汁和飲水飼醋酸鉛2.4,4.8和9.6 mmol·L-1,連續(xù)42 d。第42天水迷宮實(shí)驗(yàn)測(cè)平臺(tái)潛伏期;檢測(cè)血及腦鉛濃度;Sanna方法檢測(cè)仔鼠海馬CA1區(qū)長(zhǎng)時(shí)程增強(qiáng)(LTP)和群峰電位幅值(PS);Western印跡法檢測(cè)腦海馬總PKB(t-PKB)及磷酸化PKB(p-PKB)的表達(dá)。結(jié)果與正常對(duì)照組相比,鉛暴露組小鼠尋找平臺(tái)時(shí)間明顯延長(zhǎng)(P<0.05)。正常對(duì)照組血鉛為(0.05±0.02)mg·L-1,鉛暴露組分別為0.29±0.06,0.91±0.15和(1.46±0.37)mg·L-1;正常對(duì)照組腦鉛為(0.12±0.056)μg·g-1,鉛暴露組分別為2.07±0.55,10.18±1.51和(14.20±2.63)μg·g-1。學(xué)習(xí)記憶降低程度與血鉛、腦鉛濃度成正相關(guān)(r=0.678,r=0.645,P<0.01)。高頻刺激后,正常對(duì)照組的PS幅值明顯升高,為刺激前的1.76倍,而鉛暴露組PS幅值下降到刺激前的85%。與正常對(duì)照組比較,暴露鉛4.8及9.6 mmol·L-1組,PS幅值明顯下降(P<0.01)。鉛暴露組的LTP誘發(fā)成功率亦有所下降。小鼠海馬CA1區(qū)LTP損傷程度與血鉛、腦鉛濃度呈正相關(guān)(r=0.659,r=0.638,P<0.01)。鉛暴露組小鼠腦海馬p-PKB表達(dá)均明顯降低,并具有濃度效應(yīng)關(guān)系。p-PKB表達(dá)與血腦鉛濃度呈負(fù)相關(guān)(r=-0.840,r=-0.813,P<0.01),與學(xué)習(xí)記憶能力損傷程度呈負(fù)相關(guān)(r=-0.668,P<0.01)。鉛對(duì)小鼠海馬神經(jīng)元細(xì)胞t-PKB的表達(dá)無(wú)影響。結(jié)論慢性鉛暴露可導(dǎo)致學(xué)習(xí)記憶功能下降,可能與海馬p-PKB表達(dá)下降有關(guān)。
蛋白激酶B;鉛;海馬;學(xué)習(xí)記憶;長(zhǎng)時(shí)程增強(qiáng);群峰電位幅值
鉛暴露會(huì)導(dǎo)致兒童學(xué)習(xí)記憶功能低下,嚴(yán)重影響兒童生長(zhǎng)期的智力發(fā)育[1],其機(jī)制尚不清楚。本課題組前期研究發(fā)現(xiàn),鉛暴露通過(guò)影響蛋白激酶C(protein kinase C,PKC)、細(xì)胞外信號(hào)調(diào)節(jié)激酶(extrocellular regulated kinase,ERK)、鈣/鈣調(diào)素依賴性蛋白激酶Ⅱ(Ca2+/calmodulin dependent protein kinaseⅡ,CaMKⅡ)等蛋白激酶的活性,進(jìn)而導(dǎo)致染鉛鼠學(xué)習(xí)記憶功能下降[2-8]。PKB/Akt途徑可激活多種底物,調(diào)節(jié)細(xì)胞的存活、分化、增殖和代謝等[9]。Rodgers等[10]報(bào)道PKB/Akt也參與神經(jīng)元及膠質(zhì)細(xì)胞的存活、分化和凋亡等。本研究擬觀察慢性染鉛對(duì)小鼠學(xué)習(xí)記憶行為、長(zhǎng)時(shí)程增強(qiáng)(long-term potentiation,LTP)及小鼠海馬PKB表達(dá)的影響,進(jìn)一步探討鉛暴露導(dǎo)致學(xué)習(xí)記憶功能障礙的機(jī)制。
總PKB多克隆抗體和磷酸化PKB Thr473多克隆抗體(兔抗大鼠、小鼠和人)購(gòu)自美國(guó)Cell Signaling公司;辣根過(guò)氧化物酶標(biāo)記的羊抗兔IgG、羊抗兔IgG二抗和ECL發(fā)光檢測(cè)液購(gòu)自北京中杉金橋生物技術(shù)有限公司;蛋白預(yù)染標(biāo)志物,美國(guó)Invitrogen公司;抗β肌動(dòng)蛋白抗體,美國(guó)Santa Cruz;BCA蛋白濃度測(cè)定試劑盒,北京碧云天生物技術(shù)有限公司;SDS、丙烯酰胺-甲叉雙丙烯酰胺(Acr-Bis)、苯甲基磺酰氟化物、乙二胺四乙酸、抑肽酶、人工腦脊液(ACSF)組分及醋酸鉛等試劑均為美國(guó)Sigma公司產(chǎn)品。
低溫高速離心機(jī)(Sigma),UP50H型超聲粉碎機(jī)(美國(guó)Geprugte Sicherheit公司),VE-180型電泳儀(上海天能科技有限公司),DY-Ⅱ型轉(zhuǎn)印槽和DYCP-31DN型水平電泳儀(北京六一儀器廠),圖像分析成像軟件(Chem Image 5500 V2.03),ZQP-86振動(dòng)切片機(jī)、MEZ-8301微電極放大器、SEN-3301刺激器、SS-202J隔離器和HXD-2000電信號(hào)處理分析軟件(北京華翔公司)。
昆明系小鼠,體質(zhì)量28~34 g,由中國(guó)醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物部〔許可證號(hào)SCXK(遼)2008-0005〕提供。小鼠按每籠雄∶雌為1∶2自然交配,孕鼠隨機(jī)分為4組,每組10只:正常對(duì)照組,3個(gè)鉛暴露組為醋酸鉛2.4,4.8和9.6 mmol·L-1。每個(gè)母鼠最多喂養(yǎng)10只仔鼠。仔鼠出生后通過(guò)乳汁染鉛,第21天斷乳后,仔鼠飲用與母鼠相同的飲用水。正常對(duì)照組飲用自來(lái)水。于出生后第42天仔鼠進(jìn)行水迷宮實(shí)驗(yàn),水迷宮實(shí)驗(yàn)后,取血樣后,斷頭處死,冰上快速解剖取海馬,檢測(cè)鉛含量和測(cè)定LTP。部分海馬組織放入液氮中,貯存到-70℃冰箱中,用于PKB表達(dá)的測(cè)定。
定位航行實(shí)驗(yàn)共進(jìn)行7 d。每天訓(xùn)練分上、下午兩段進(jìn)行,每段訓(xùn)練2次,訓(xùn)練時(shí)隨機(jī)選擇一個(gè)入水點(diǎn),將小鼠面向池壁放入水中,觀察并記錄小鼠尋找并爬上平臺(tái)所需時(shí)間(潛伏期)。4次訓(xùn)練分別從不同的入水點(diǎn)入水,如果小鼠在120 s內(nèi)未找到平臺(tái),將其引至平臺(tái)穩(wěn)定10 s。潛伏期記錄為120 s,每次訓(xùn)練間隔60 s。
水迷宮實(shí)驗(yàn)后,以微量注射器經(jīng)眼眶采靜脈血0.5~1.0 ml,肝素抗凝。200 μl靜脈血,加2.5 ml稀硝酸0.1 mol·L-1,混勻放置過(guò)夜,加體積分?jǐn)?shù)0.1的三氯醋酸300 μl,3000×g離心15 min,取上清石墨原子吸收法測(cè)定血鉛含量。取小鼠的雙側(cè)海馬,稱重后加5 ml純硝酸,24 h后,加熱消化,冷卻定容到25 ml,石墨原子吸收法測(cè)定腦鉛含量。
水迷宮實(shí)驗(yàn)后,每組取10只仔鼠,快速斷頭,迅速取出全腦置于0~4℃且用95%O2和5%CO2飽和的ACSF(mmol·L-1:NaCl 124,KCl 4.4,NaH2PO41,NaHCO325,MgSO41.2,CaCl22,葡萄糖10,pH 7.4)中。氧飽和后,切去小腦和1/3前腦,用膠水將含有海馬的腦組織塊固定在載物浴碟上,用振動(dòng)切片機(jī)冠狀面切厚度為400 μm的腦片。記錄電極置于CA1區(qū)錐體細(xì)胞層。刺激參數(shù)為:100 Hz,100脈沖刺激三串,串間隔10 s。
高頻刺激(high frequency stimulation,HFS)后,用單脈沖刺激檢驗(yàn)誘發(fā)的群峰電位幅值(population spike amplitude,PS)變化及變化維持的時(shí)間表示,如PS的平均幅值高于或低于基線值的10%以上,并維持30 min,被認(rèn)為統(tǒng)計(jì)學(xué)有意義,高者定義為L(zhǎng)TP。
取冰凍海馬組織,加入適量預(yù)冷的細(xì)胞裂解液〔NaCl 0.1 mmol·L-1,Tris-HCl 0.01 mmol·L-1(pH 7.6),EDTA 1 mmol·L-1(pH 8.0),抑肽酶0.1 mg·L-1,PMSF 0.1 mg·L-1〕,4℃超聲粉碎后,17 000×g離心1 h,取上清分裝。用BCA法定量蛋白濃度。上樣總蛋白40 μg,12%SDS-PAGE分離蛋白質(zhì),電轉(zhuǎn)移至硝酸纖維素膜,5%脫脂牛奶室溫封閉2 h。一抗(1∶400),二抗(1∶5000),ECL試劑顯帶,X線片曝光,顯影定影后掃描。利用ChemiImager 5500 V2.03圖像分析軟件對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析,以目的條帶與內(nèi)參照β肌動(dòng)蛋白的平均吸光度比值表示相對(duì)表達(dá)水平,進(jìn)行半定量分析。
Fig.1 Effect of lead acetate on time of finding platform.Young mice were exposed to lead acetate(0,2.4,4.8 and 9.6 mmol·L-1)by placenta,milk and drinking water for 42 d consecutively.Morris water maze was determined in postnatal 42 d.±s,n=10.*P<0.05,compared with corresponding normal control group.
圖1結(jié)果顯示,與正常對(duì)照組相比,鉛暴露組第1天尋找平臺(tái)使用的時(shí)間略長(zhǎng)于正常對(duì)照組,但只有9.6 mmol·L-1組的差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。從第2天開(kāi)始,正常對(duì)照組所用時(shí)間明顯縮短,為第1天所用時(shí)間的64%;鉛暴露組所用的時(shí)間雖然也減少,分別為第1天所用時(shí)間的64%,75%和86%。第6和第7天時(shí),鉛暴露組所用的時(shí)間均高于正常對(duì)照組,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。提示鉛暴露可明顯損傷小鼠的空間學(xué)習(xí)記憶能力。Pearson相關(guān)分析顯示,學(xué)習(xí)記憶能力損傷程度與血鉛、腦鉛濃度呈正相關(guān)(r=0.678和0.645,P<0.01),即隨血鉛、腦鉛濃度升高,空間學(xué)習(xí)記憶損傷程度越嚴(yán)重。
表1結(jié)果表明,與正常對(duì)照組相比,鉛暴露組仔鼠血鉛濃度和腦鉛濃度顯著增加(P<0.01),并呈劑量相關(guān)性(r=0.701和0.678,P<0.01)。
Tab.1 Effect of lead acetate exposure on brain and blood lead in mice
高頻刺激前,正常對(duì)照組PS幅值為(156±13.7)mV,鉛暴露組為(139.9±13.2)mV,兩組無(wú)顯著性差異。高頻刺激后,正常對(duì)照組的PS幅值明顯升高,為刺激前的1.76倍,而鉛暴露組的PS幅值下降到刺激前的85%,兩組在同一時(shí)間的PS幅值比較有統(tǒng)計(jì)學(xué)意義(圖2A)。鉛暴露2.4 mmol·L-1組PS幅值與正常對(duì)照組比較無(wú)顯著性差異。如圖2B所示,與正常對(duì)照組比較,鉛暴露4.8及9.6 mmol·L-1組PS幅值明顯降低(P<0.01)。鉛暴露組的LTP誘發(fā)成功率亦有所下降,正常對(duì)照組LTP誘發(fā)成功率為78%(7/9)。鉛暴露組LTP誘發(fā)成功率為60%(6/10)。Pearson相關(guān)分析顯示,小鼠海馬CA1區(qū)LTP損傷程度與血鉛、腦鉛濃度呈正相關(guān)(r=0.659和0.638,P<0.01),即隨血鉛、腦鉛濃度升高,LTP損傷程度越嚴(yán)重。
圖3結(jié)果顯示,與正常對(duì)照組相比,鉛暴露組p-PKB表達(dá)顯著降低(P<0.01),分別降低了9.7%,47.2%和65.7%;并與鉛濃度呈負(fù)相關(guān)(r=-0.840,P<0.01)。鉛暴露對(duì)總PKB蛋白表達(dá)無(wú)影響。Pearson相關(guān)分析顯示,p-PKB表達(dá)與血腦鉛濃度呈負(fù)相關(guān)(r=-0.840,r=-0.813,P<0.01),即血腦鉛的濃度越高,p-PKB表達(dá)降低越明顯。p-PKB表達(dá)與學(xué)習(xí)記憶能力損傷程度呈負(fù)相關(guān)(r=-0.668,P<0.01),即p-PKB表達(dá)降低越明顯,學(xué)習(xí)記憶損傷程度越嚴(yán)重。
Fig.2 Effects of lead acetate exposure on long-term potentiation(LTP)in mice.A:examples of original traces of population spike recording from mice of control and chronic lead exposure group in 5 min before high frequency stimulant(HFS)(a,c)and after HFS 20 min(b,d)of normal control and chronic lead exposure groups,respectively.B:defined the average of seven PS before HFS as 100%.±s,n=7.**P<0.01,compared with corresponding normal control group.
Fig.3 Effect of lead on protein kinase B(PKB)expression in hippocampus of mice exposed to chronic lead.A:lead acetate 0,2.4,4.8 and 9.6 mmol·L-1was given to mice for 6 weeks.B:the semiquantitative result of A.±s,n=4.*P<0.05,compared with corresponding control group.
本研究結(jié)果提示,慢性鉛暴露可明顯損傷小鼠的空間學(xué)習(xí)記憶能力,損傷程度與血鉛、腦鉛的濃度成正相關(guān);水迷宮結(jié)果表明,高濃度染鉛可導(dǎo)致空間記憶損傷。有研究證明,基因改變的小鼠在CA1區(qū)不能誘導(dǎo)LTP,并顯示空間記憶缺失[15],故選定CA1的LTP為測(cè)定指標(biāo)。慢性鉛暴露鼠海馬腦片LTP實(shí)驗(yàn)證明,鉛暴露導(dǎo)致小鼠海馬CA1區(qū)LTP異常,高頻刺激前正常對(duì)照組及鉛暴露組的PS幅值無(wú)明顯差異,而高頻刺激后,鉛暴露組PS幅值比正常對(duì)照組明顯降低。鉛暴露組的LTP誘發(fā)成功率亦有所下降。該結(jié)果說(shuō)明鉛暴露可使小鼠LTP異常,導(dǎo)致空間記憶損傷。
研究發(fā)現(xiàn),PI3K激活下游的PKB/Akt等參與海馬CA1區(qū)LTP的維持期的磷酸化,而與LTP的誘導(dǎo)無(wú)關(guān)[16]。Western印跡結(jié)果顯示,慢性鉛暴露對(duì)小鼠大腦海馬組織t-PKB表達(dá)水平?jīng)]有顯著性影響,但可降低小鼠大腦海馬組織p-PKB的表達(dá)水平。PKB磷酸化與血鉛濃度呈負(fù)相關(guān),與學(xué)習(xí)記憶能力損傷程度比較呈負(fù)相關(guān)。該結(jié)果說(shuō)明隨染鉛濃度增加,PKB磷酸化量減少,進(jìn)而導(dǎo)致學(xué)習(xí)記憶功能低下。因PKB的磷酸化在一定程度上代表PKB的活性,說(shuō)明鉛是通過(guò)影響PKB的活性而導(dǎo)致小鼠學(xué)習(xí)記憶功能下降的。該結(jié)果說(shuō)明PKB是鉛作用的一個(gè)靶點(diǎn),即鉛通過(guò)影響中樞神經(jīng)系統(tǒng)海馬神經(jīng)元細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中PKB的磷酸化,而進(jìn)一步影響LTP的維持,導(dǎo)致學(xué)習(xí)記憶功能異常。這是鉛致學(xué)習(xí)記憶功能紊亂的原因之一,即慢性鉛暴露小鼠腦海馬組織PKB表達(dá)降低與慢性鉛暴露小鼠學(xué)習(xí)記憶功能異常有關(guān)。前期研究指出,鉛暴露時(shí)大腦皮質(zhì)PKB表達(dá)也有類似改變[17],其詳細(xì)機(jī)制有待于進(jìn)一步探討。
[1]Canfield RL,Henderson CR Jr,Cory-Slechta DA,Cox C,Jusko TA,Lanphear BP.Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter[J].N Engl J Med,2003,348(16):1517-1526.
[2]Hou WJ,Sun LG,Zhu QW,Wu Z,Liu SY,Xing W.Relationships among plumbum,activity of protein kinase C in the brain tissue of fetal mice and changes in memory function[J].Chin J Clin Rehabilit(中國(guó)臨床康復(fù)),2005,9(4):241-243.
[3]Yang J,Sun LG,Cai K,Zong ZH,Xing W,Liu SY,et al.Effect of acute and chronic lead exposure on CA1-long term potentiation and active extracellular signal-regulated kinase 2 of rat hippocampus[J].Chin J Pharmcol Toxicol(中國(guó)藥理學(xué)與毒理學(xué)雜志),2004,18(1):66-70.
[4]Wen T,Sun LG,Zong ZH,Xing W,Liu SY.Effect of lead exposure on expression of Ca2+-calmodulin dependent protein kinaseⅡin mice[J].Chin J Pharmcol Toxicol(中國(guó)藥理學(xué)與毒理學(xué)雜志),2005,19(5):393-395.
[5]Zhang Y,Sun LG,Ye LP,Cao SC,Wang Y.The effect of lead on ERK activity and total of rat primary neural-glia culture[J].J Toxicol(毒理學(xué)雜志),2007,21(5):395-398.
[6]Gao S,Wen F,Sun LG,Gong HZ,Jiang H.Effect of chronic lead exposure on expression of PKC-γ in mice hippocampus[J].Chin J Public Health(中國(guó)公共衛(wèi)生),2008,24(7):793-794.
[7]Peng B,Wu Z,Zhang CD.Effect of chronic lead exposure on expression of PI3Ks in cortical neuron of mice[J].Chin J Public Health(中國(guó)公共衛(wèi)生),2010,26(2):228-229.
[8]Peng B,You YY,Gao S,Sun LG.Effect of chronic lead exposure on expression of PI3Ks/PKB pathway in cortical neuron of mice[J].J Toxicol(毒理學(xué)雜志),2012,26(2):92-94.
[9]Alessi DR,Andjelkovic M,Caudwell B,Cron P,Morrice N,Cohen P,et al.Mechanism of activation of protein kinase B by insulin and IGF-1[J].EMBO J,1996,15(23):6541-6551.
[10]Rodgers EE,Theibert AB.Functions of PI3-kinase in development of the nervous system[J].Int J Dev Neurosci,2002,20(3-5):187-197.
[11]Selcher JC,Atkins CM,Trzaskos JM,Paylor R,Sweatt JD.A necessity for MAP kinase activation in mammalian spatial learning[J].Learn Mem,1999,6(5):478-490.
[12]Fernandez FJ.Micromethod for lead determination in whole blood by atomic absorption,with use of the graphite furnace[J].Clin Chem,1975,21(4):558-561.
[13]Sanna PP,Berton F,Cammalleri M,Tallent MK,Siggins GR,Bloom FE,et al.A role for Src kinase in spontaneous epileptiform activity in the CA3 region of the hippocampus[J].Proc Natl Acad Sci USA,2000,97(15):8653-8657.
[14]Ye LP,Sun LG,Ren F,Liu P,Zhang Y.Anti-apoptoic signal pathway of bFGF by ERK in ovarian cancer cell line CAOV3[J].Chin J Anat(解剖學(xué)雜志),2007,30(2):146-149,156.
[15]Nosten-Bertrand M,Errington ML,Murphy KP,Tokugawa Y,Barboni E,Kozlova E,et al.Normal spatial learning despite regional inhibition of LTP in mice lac-
king Thy-1[J].Nature,1996,379(6568):826-829.[16]Sanna PP,Cammalleri M,Berton F,Simpson C,Lutjens
R,Bloom FE,et al.Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region[J].J Neurosci,2002,22(9):3359-3365.
[17]Peng B,Zhang CD,Ren Y,Wu Z.Effect of protein kinase B on the learning and memory functions of mice with chronic lead exposure[J].Chin J Neuromed(中華神經(jīng)醫(yī)學(xué)雜志),2009,8(4):363-366.
Impairment of learning and memory and decreasing of protein kinase Bexpression in mice hippocampus induced by lead
PENG Bo1,YOU Yuan-yuan2,SUN Li-guang2
(1.Outpatient Department,2.Department of Biochemistry and Molecular Biology,College of Basic Medical Sciences,China Medical University,Shenyang110001,China)
OBJECTIVETo explore the effect of protein kinase B(PKB)expression on learning and memory in hippocampus neuron of mice exposed to chronic lead.METHODSYoung mice were exposed to acetic lead 0,2.4,4.8 and 9.6 mmol·L-1by placenta,milk and drinking water for 42 d consecutively,after mice of 5-6 weeks were mated.Morris water maze was determined in postnatal 42 d to observe the capability of spatial learning and memory,blood and brain lead was determined in mice.The population spike(PS)amplitude in CA1 region mice in four groups were alternatively determined by Sanna method.The expression of total PKB(t-PKB)and phosphorylated PKB(p-PKB)determined by Western blotting.RESULTSThe mean time of finding the platform in lead exposure group was higher than that of the control group(P<0.05).Compared with blood lead in control group(0.05±0.02)mg·L-1;blood lead in lead exposure groups was 0.29±0.06,0.91±0.15 and(1.46±0.37)mg·L-1,respectively.Compared with the brain lead in control group was(0.12±0.056)μg·g-1tissue,brain lead in lead exposure groups was 2.07±0.55,10.18±1.51 and(14.20±2.63)μg·g-1,respectively.Chronic acetic lead exposure could damage the capability of spatial learning and memory in mice obviously;the damage level was positive correlated with the concentration of blood and brain lead(r=0.678 and 0.645,P<0.01).After the application of the high frequency stimulation(HFS),the PS amplitude in control group increased in relation to baseline amplitude to 176%,while in chronic lead exposure group decreased to 85%.PS amplitude of lead 4.8 and 9.6 mmol·L-1groups was significantly lower then that in the corresponding control group(P<0.01).The incidence of long-term potentiation(LTP)induction of lead exposure group decreased significantly.The damage level of LTP in lead exposure group was positive correlate with the concentration of blood and brain lead(r=0.659,r=0.638,P<0.01).The expression of p-PKB in hippocampus of lead exposure group was decreased significantly dose-dependently.The expression of p-PKB in hippocampus was negatively correlated with the concentrations of blood lead and brain lead(r=-0.840,r=-0.813,P<0.01),and the capability of spatial learning and memory(r=-0.668,P<0.01).The t-PKB protein levels did not change under the same experimental conditions.CONCLUSIONThe chronic acetic lead exposure could depress the function of learning and memory in mice.The decreased expression of p-PKB induced by lead exposure in hippocampus may be the one of the reasons of the damage of learning and memory induced by lead exposure in mice.
protein kinase B;lead;hippocampus;learning and memory;long-term potentiation;population spike amplitude
The project supported by National Natural Science Foundation of China(39970651)
SUN Li-guang,E-mail:ydslg@163.com,Tel:(024)23256666-5297
R995
A
1000-3002(2012)06-0801-05
10.3867/j.issn.1000-3002.2012.06.004
國(guó)家自然科學(xué)基金(39970651)
彭博(1969-),女,副主任醫(yī)師,碩士,主要從事神經(jīng)系統(tǒng)疾病與信號(hào)轉(zhuǎn)導(dǎo)研究,E-mail:ydpb@163.com;孫黎光(1944-),女,教授,博士生導(dǎo)師,主要從事細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)及神經(jīng)毒理學(xué)研究。
孫黎光,E-mail:ydslg@163.com,Tel:(024)23256666-5297
2012-02-15接受日期:2012-06-14)
(本文編輯:喬虹)