劉加強(qiáng),王訓(xùn)練,周洪瑞,高金漢,于 蕾,鄭 楠,毛志芳
(中國地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院,北京 100083)
鋁土礦是多種金屬礦產(chǎn)(如鋁、鎵)的重要原料(Laskou,1991;Evans,1993;Calagari,2007;Mameli et al.,2007;Liu et al.,2010)。根據(jù)鋁土礦下伏巖石類型的差異,可劃分為喀斯特型鋁土礦和紅土型鋁土礦兩種主要類型??λ固匦弯X土礦下伏地層為灰?guī)r,紅土型鋁土礦下伏地層則為鋁硅酸鹽。對紅土型鋁土礦結(jié)構(gòu)、組分的研究表明,其源巖大多為下伏巖層(Bárdossy and Aleva,1990;Horbe and Costa,1999;Mutakyahwa et al.,2003)。相比而言,喀斯特型鋁土礦成礦過程則復(fù)雜的多(Mordberg,2001; ?ztürk and Hein,2002;Laskou,2003;Karada? et al.,2009;Deng et al.,2010)。通過巖石結(jié)構(gòu)、組分來判別其源巖很難得到正確的結(jié)論。正因如此,國內(nèi)外很多學(xué)者對喀斯特型鋁土礦進(jìn)行了大量的研究(Schroll and Sauer,1968;?zlü,1983;MacLean and Kranidiotis,1987;MacLean,1987;MacLean et al., 1997;Kurtz et al.,2000;Panahi et al.,2000;孟健寅等,2011),以明確其源巖及成礦機(jī)理,在這種背景之下,許多新的方法引入到鋁土礦的研究之中。
云南素有“有色金屬王國”、“礦業(yè)大省”的美譽(yù),其鋁土礦探明儲量3650萬噸,其中80%分布在滇東南文山州境內(nèi),目前已探明的鋁土礦資源主要分布在該地區(qū)的丘北縣、硯山縣、文山縣、西疇縣、廣南縣及麻栗坡縣境內(nèi)。
本文試圖通過對滇東南地區(qū)鋁土礦的地球化學(xué)特征進(jìn)行研究,以查明鋁土礦成礦物質(zhì)來源,為下一步的勘探開發(fā)提供理論依據(jù)。
峨眉山大火成巖省是目前中國唯一公認(rèn)的地幔柱成因大火成巖省,主要巖石類型為基性玄武巖及基性侵入巖(Zhou et al.,2002;Zhong et al.,2003),還有部分長英質(zhì)巖漿巖(如A型花崗巖)及流紋巖(Zhong et al.,2007;Shellnutt and Zhou,2007),這些酸性侵入巖及噴出巖出露在位于峨眉山大火成巖省內(nèi)帶的攀枝花和西昌地區(qū)(Shellnutt and Zhou,2007)。
滇東南地區(qū)處于揚(yáng)子地臺西南,大地構(gòu)造單元屬于華南褶皺系滇東南褶皺帶,位于峨眉山大火成巖省的外帶(He et al.,2006;Xu et al.,2008)(圖1)。研究區(qū)出露寒武系、志留系、石炭系、二疊系、三疊系和第四系(圖2a),主要以上古生界和新生界三疊系為主,玄武巖主要分布于研究區(qū)西部,為峨眉山玄武巖。上二疊統(tǒng)吳家坪階下部主要為一套鋁土礦、鐵鋁巖、砂巖、粉砂巖、(炭質(zhì))泥巖及煤的沉積。
圖1 峨眉山大火成巖省地質(zhì)簡圖(據(jù)He et al.,2006; Xu et al.,2008;Deng et al.,2011修改)Fig 1 Geological sketch map of the Emeishan LIP (after He et al.,2006;Xu et al.,2008;Deng et al.,2011).1-峨眉山玄武巖;2-長英質(zhì)巖漿巖;3-主要斷裂;4-城市; 5-玄武巖分區(qū);6-國界;7-省界;8-研究區(qū)1-Emeishan basalt;2-flesic Magmatic rocks;3-main fault;4-city;5 -basalt zone bounary;6-country boundary;7-provincial boundary;8 -study area
滇東南地區(qū)自石炭紀(jì)至中二疊世時處于穩(wěn)定的揚(yáng)子克拉通區(qū),屬于陸表海環(huán)境,廣泛發(fā)育海相碳酸鹽巖、白云巖及硅質(zhì)巖。中二疊世末期,由于峨眉山地幔柱的活動導(dǎo)致了該地區(qū)地殼的抬升,大量玄武巖噴露地表,東吳運(yùn)動的第一幕開始,這使得下伏灰?guī)r和峨眉山玄武巖暴露地表并遭受風(fēng)化剝蝕,在灰?guī)r剝蝕地區(qū)形成了喀斯特地貌。隨后的晚二疊世海侵又使得風(fēng)化剝蝕產(chǎn)物淹沒并被搬運(yùn)到喀斯特低洼區(qū)形成了鋁土礦沉積。
研究區(qū)含鋁巖系自下而上依次為鐵質(zhì)巖-鐵質(zhì)泥巖-鐵鋁巖-鋁質(zhì)巖-炭質(zhì)泥巖(圖2b),鋁土礦體賦存于上二疊統(tǒng)吳家坪階下部,其下伏地層為峨眉山玄武巖組、陽新組或上石炭統(tǒng)黃龍組。丘北水米沖、硯山平遠(yuǎn)街、文山者黑沖一帶,含鋁巖段中含有較多的凝灰?guī)r、凝灰質(zhì)粘土巖(馮曉宏等,2009)。礦體形態(tài)及厚度隨基底起伏變化而相應(yīng)的減薄或增厚,表明鋁土礦厚度分布受古地形地貌控制。
研究區(qū)鋁土礦的結(jié)構(gòu)主要有致密狀(圖3a)、碎屑狀(圖3b,圖3c)、豆鮞狀(圖3d)等,塊狀構(gòu)造,局部呈條帶狀構(gòu)造。礦體中產(chǎn)出鱗木、蘆木等植物化石碎屑說明鋁土礦物質(zhì)經(jīng)過一段距離的搬運(yùn)。鋁土礦礦石中含有較多鋯石、金紅石、石榴石、電氣石、剛玉、鈮鉭鐵礦、磁鐵礦、銳鈦礦、毒砂等與巖漿有關(guān)的礦物(馮曉宏等,2009)。
本文對丘北縣古城礦區(qū)鋁土礦層及下伏灰?guī)r進(jìn)行系統(tǒng)采樣,共系統(tǒng)采集鋁土礦樣品19件,灰?guī)r樣品1件,系統(tǒng)采樣剖面位置及采樣位置見圖2。
本文對所采20件樣品進(jìn)行全巖分析,將所有樣品用瑪瑙研缽研磨到200目以下,測試工作由河北廊坊地質(zhì)調(diào)查所完成。常量元素(除FeO)用X射線熒光光譜分析測定,儀器為帕那科公司X熒光光譜儀;FeO含量用50ml定滴管采用重鉻酸鉀滴定法測定;微量元素和稀土元素含量用X Sersies 2等離子體質(zhì)譜儀(ICP-MS)測定完成。
滇東南地區(qū)晚二疊世吳家坪早期主要沉積鋁土礦、鐵鋁巖、砂巖、粉砂巖、(炭質(zhì))泥巖和煤。本文選取了19件鋁土礦及1件灰?guī)r樣品進(jìn)行主量元素測試,選取其中6件鋁土礦及1件灰?guī)r樣品進(jìn)行微量和稀土元素測試,測試結(jié)果見表1~3。
鋁土礦主量元素SiO2(3.8~37.5 wt%),F(xiàn)e2O3(0.69~29.98wt%),Al2O3(31.5~67.63 wt%),TiO2(1.73~11.13 wt%)及FeO(0.18~3.04 wt%)的含量較高,且變化范圍較大,但堿性元素(K2O+ Na2O)的含量卻很低(0.04% ~1.74%)。在Al2O3-Fe2O3和Al2O3-SiO2圖解中表現(xiàn)出負(fù)相關(guān)關(guān)系(圖4),說明在鋁土礦化過程中隨著Al元素含量的增加,F(xiàn)e2O3和SiO2的含量降低。
表1 滇東南地區(qū)鋁土礦及灰?guī)r常量組成(wt%)Table 1 Major element compositions of bauxite ores and limestone in southeastern Yunnan Province(wt%)
表2 滇東南地區(qū)鋁土礦及灰?guī)r微量元素組成(×10-6)Table 2 Trace element compositions of bauxite ores and limestone,southeastern Yunnan Province(×10-6)
表3 滇東南地區(qū)鋁土礦及灰?guī)r稀土元素組成(×10-6)Table 3 Rare earth elements compositions of bauxite ores and limestone,southeastern Yunnan Province(×10-6)
圖4 滇東南地區(qū)上二疊統(tǒng)吳家坪階下部鋁土礦Al2O3-Fe2O3與SiO2-Al2O3相關(guān)性圖解Fig.4 Binary diagrams showing correlations between Al2O3-Fe2O3and Al2O3-SiO2in the lower Wujiapingian of upper Permian,Southeastern Yunnan Province
在所有的微量元素中,除 V(505.5×10-6~1213×10-6)),Cr(164.9×10-6~226.9×10-6),Sr (67.19×10-6~557.9×10-6),Zr(404×10-6~618 ×10-6),Ba(32.87×10-6~191.7×10-6)的含量較高外,其他的微量元素含量較少。
在大陸上地殼標(biāo)準(zhǔn)化圖解(圖5a)中,鋁土礦與峨眉山玄武巖有相似的配分曲線:均明顯富集Cu、Zn、V、Zr、Hf、Nb、Ta、U等元素,強(qiáng)烈虧損Ni、Cs等元素。下伏灰?guī)r在上述圖解表現(xiàn)與鋁土礦差異較大,微量元素均顯示虧損。鋁土礦原始地幔標(biāo)準(zhǔn)化圖中(圖5b)仍顯示與峨眉山玄武巖的相似性:均強(qiáng)烈富集Zr、Hf、Nb、Ta、Th、U元素,強(qiáng)烈虧損Ni元素,其特征與灰?guī)r差異較大。雖然在上地殼標(biāo)準(zhǔn)化圖和原始地幔標(biāo)準(zhǔn)化圖中,鋁土礦表現(xiàn)出不同的形態(tài)特征,但都富集Zr、Hf、Nb、Ta、U元素。
通過對鋁土礦微量元素相關(guān)性進(jìn)行分析(圖6)可以看出:TiO2與Zr、Hf、Nb、Ta等元素相關(guān)性較好,且Zr-Hf、Nb-Ta之間具有明顯的正相關(guān)關(guān)系。這表明Zr、Hf、Nb、Ta等高場強(qiáng)元素在滇東南地區(qū)鋁土礦礦化過程中較為穩(wěn)定。
圖5 滇東南地區(qū)鋁土礦微量元素上地殼(a)、原始地幔標(biāo)(b)準(zhǔn)化圖解(原始地幔標(biāo)準(zhǔn)化數(shù)據(jù)來自McDonough and Sun,1995;上地殼標(biāo)準(zhǔn)化數(shù)據(jù)來自Rudnick and Gao,2003;玄武巖數(shù)據(jù)來自Hanski et al.,2010)Fig.5 Continental-crust-normalized pattern (a)and primitive-mantle-normalized pattern(b)of trace elements(Primitive-mantle normalization values are from McDonough and Sun,1995;Continentalcrust normalization values are from Rudnick and Gao,2003;data of basalts are from Hanski,et al.,2010)1-峨眉山玄武巖;2-滇東南鋁土礦;3-下伏灰?guī)r1-Emeishan basalts;2-bauxite ores;3-underlying limestone
圖6 滇東南地區(qū)鋁土礦微量元素相關(guān)性圖解Fig.6 Diagrams showing correlations among trace elements from bauxite deposit,southeastern Yunnan Province
總體上看,滇東南地區(qū)鋁土礦的稀土元素總量(ΣREE)、輕稀土元素含量(ΣLREE)和重稀土元素含量(ΣHREE)與其下伏灰?guī)r相比明顯富集。鋁土礦ΣLREE(268.64×10-6~563.41×10-6)含量明顯高于ΣHREE(25.68×10-6~54.63×10-6),其ΣLREE/ΣHREE為7.72~15.48。而下伏灰?guī)r的ΣREE為 6.45×10-6,ΣLREE值為 3.58×10-6,ΣHREE值為 2.87×10-6,LREE/HREE值僅為1.25。經(jīng)球粒隕石標(biāo)準(zhǔn)化后,鋁土礦Ce/Ce×值介于0.81~3.92之間(平均值1.93),Eu/Eu×值為0.92~1.09,峨眉山玄武巖的Ce/Ce×值(0.97~1.12)和Eu/Eu×值(0.80~1.25)(平均為0.98)與鋁土礦相近。而下伏灰?guī)r對應(yīng)值分別為0.27和 0.74,顯示具有強(qiáng)烈的負(fù)Ce異常和Eu異常。
鋁土礦球粒隕石標(biāo)準(zhǔn)化曲線(圖7)中,鋁土礦與峨眉山玄武巖配分曲線趨勢一致,均富集輕稀土元素,而下伏灰?guī)r標(biāo)準(zhǔn)化曲線則較為平坦。
Al、Ti、Zr、Hf、Nb、Ta、Cr及Ni等地球化學(xué)元素因其在風(fēng)化過程中相對穩(wěn)定(MacLean and Kranidiotis,1987;Kurtz et al.,2000;Panahi et al.,2000;Mc-Donough and Sun,1995),被越來越多的學(xué)者應(yīng)用于鋁土礦源巖的研究之中。此外,REE和微量元素的分布形態(tài)及其相關(guān)元素的參數(shù)也是識別鋁土礦源巖的重要方法。
圖7 滇東南地區(qū)鋁土礦球粒隕石標(biāo)準(zhǔn)化圖解(球粒隕石標(biāo)準(zhǔn)化數(shù)據(jù)引自Sun and McDonough,1989;玄武巖數(shù)據(jù)據(jù)Hanski et al.,2010)Fig 7 Chondrite-normalized REE patterns of bauxite Ores,southeastern Yunnan.(chondrite-normalized data after Sun and McDonough,1989;data of basalts are from Hanski et al.,2010)1-峨眉山玄武巖;2-滇東南鋁土礦;3-下伏灰?guī)r1-Emeishan basalts;2-bauxite Ores;3-underlying limestone
LogCr-LogNi可以較好的識別鋁土礦的類型及其物質(zhì)來源(Schroll and Sauer,1968)。滇東南地區(qū)的鋁土礦Cr值變化范圍較小,介于164.9× 10-6~226.9×10-6,LogCr-LogNi圖(圖8)可以看出,鋁土礦投在紅土型鋁土礦和喀斯特型鋁土礦之間,接近玄武巖區(qū),表明其物質(zhì)來源主要為玄武巖。
圖8 滇東南地區(qū)鋁土礦LogCr-LogNi圖解(底圖據(jù)Schroll and Sauer,1968)Fig.8 Plot of LogNi verse LogCr of bauxite ores,southeastern Yunnan Province(base map from Schroll and Sauer,1968)
鋁土礦中Zr、Hf、Nb、Ta等元素較為穩(wěn)定,其比值(Zr/Hf、Nb/Ta)與母巖中穩(wěn)定元素比值相似,通過Zr-Hf,Nb-Ta圖可以很好的判別鋁土礦的源巖(MacLean and Kranidiotis,1 9 8 7;Valeton et al., 1987)。滇東南地區(qū)位于峨眉山大火成巖省的外帶,在研究區(qū)及周邊地區(qū)廣泛分布峨眉山玄武巖和過鋁質(zhì)花崗巖。將前人所發(fā)表的峨眉山玄武巖、過鋁質(zhì)花崗巖數(shù)據(jù)及本次研究所采集的樣品數(shù)據(jù)投在Zr-Hf,Nb-Ta圖(圖9)中發(fā)現(xiàn),滇東南地區(qū)鋁土礦與峨眉山玄武巖及灰?guī)r有很好的線性關(guān)系,而與矮郎河過鋁質(zhì)花崗巖相關(guān)性不強(qiáng),說明峨眉山玄武巖或下伏灰?guī)r可能為其物質(zhì)來源。
圖9 不同類型巖石的Zr-Hf和Nb-Ta圖解(玄武巖數(shù)據(jù)據(jù)Hanski et al.,2010;花崗巖數(shù)據(jù)據(jù)Shellnutt and Zhou,2007)Fig.9 Zr-Hf and Nb-Ta diagrams for different types of rocks(basalts data from Hanski et al.,2010;granite data from Shellnutt and Zhou,2007)1-下伏灰?guī)r;2-滇東南鋁土礦;3-金平峨眉山玄武巖;4-越北峨眉山玄武巖;5-矮郎河過鋁質(zhì)花崗巖1-underlying limestone;2-bauxite ores;3-Jinping Emeishan basalts;4-North Vietnam Emeishan basalts; 5-Ai Langhe Peraluminous granites
由于下伏灰?guī)r與鋁土礦的微量元素、稀土元素標(biāo)準(zhǔn)化配分模式差異很大,與峨眉山玄武巖則相似。稀土元素Eu/Eu*在整個含鋁巖系中很穩(wěn)定,可以作為判別物質(zhì)來源的指標(biāo)(Mameli et al.,2007)。滇東南地區(qū)鋁土礦、玄武巖和灰?guī)r的Eu/Eu*值分別為0.92~1.09、0.80~1.25和0.74,可見鋁土礦的主要物質(zhì)來源為玄武巖,而灰?guī)r為母巖的可能性較小。
此外,研究區(qū)的丘北水米沖、硯山平遠(yuǎn)街、文山者黑沖一帶,含鋁巖段中含有較多的凝灰?guī)r、凝灰質(zhì)粘土巖,且礦石中可見鋯石、金紅石、石榴石、電氣石、剛玉、鈮鉭鐵礦、磁鐵礦、銳鈦礦、毒砂等與巖漿有關(guān)的礦物(馮曉宏等,2009)。這些特征都說明與巖漿作用有關(guān)的玄武巖是鋁土礦的主要物質(zhì)來源。
通過對上述對鋁土礦巖石學(xué)、礦物學(xué)及地球化學(xué)特征的研究,認(rèn)為峨眉山玄武巖是滇東南地區(qū)晚二疊世吳家坪早期鋁土礦沉積的主要物質(zhì)來源。
(1)滇東南鋁土礦常量元素主要由 SiO2、Fe2O3、Al2O3、TiO2和FeO組成,Al2O3與 Fe2O3和SiO2均表現(xiàn)出負(fù)相關(guān)關(guān)系;鋁土礦中富集Zr、Hf、Nb、Ta、U元素,TiO2與Zr、Hf、Nb、Ta等元素相關(guān)性較好,且Zr-Hf、Nb-Ta之間具有明顯的正相關(guān)關(guān)系,表明Zr、Hf、Nb、Ta等高場強(qiáng)元素在滇東南地區(qū)鋁土礦礦化過程中較為穩(wěn)定;鋁土礦球粒隕石標(biāo)準(zhǔn)化曲線與峨眉山玄武巖配分曲線趨勢一致,均富集輕稀土元素,而與下伏灰?guī)r差異較大。
(2)鋁土礦在LogCr-LogNi圖中,投在紅土型鋁土礦和喀斯特型鋁土礦之間,且靠近玄武巖區(qū);鋁土礦Zr-Hf、Nb-Ta與峨眉山玄武巖呈線性關(guān)系,而與矮郎河過鋁質(zhì)花崗巖的相關(guān)性不強(qiáng);含鋁巖段中含有較多的凝灰?guī)r、凝灰質(zhì)粘土巖,礦石中可見鋯石、金紅石、石榴石、電氣石、剛玉、鈮鉭鐵礦、磁鐵礦、銳鈦礦、毒砂等與巖漿有關(guān)的礦物。上述特征表明滇東南地區(qū)晚二疊世吳家坪早期沉積型鋁土礦主要物質(zhì)來源為峨眉山玄武巖。
Bárdossy G,Aleva G J J.1990.Lateritic bauxites.Developments in Economic Geology[M].Amsterdam:Elsevier Scientific Publication:1-624
Calagari A A,Abedini A.2007.Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh,east of Bukan,West-Azarbaidjan,Iran[J].Journal of Geochemical Exploration,94:1-18 Deng Jun,Wang Qing-fei,Yang Shui-juan,Liu Xue-fei,Zhang Qizuan,Yang Li-qiang.2010.Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi,China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores[J].Journal of Asian Earth Sciences,37:412-424
Evans A M.1993.Ore Geology and Industrial Minerals—An Introduction[M].London:Blackwell:1-389
Feng Xiao-hong,Wang Chen-xing,Cui Zi-liang,Liu Yu-chun,Zhang Xing-heng.2009.A discussion about the material source of bauxite deposit in SE Yunnan[J].Yunnan Geology,28(3):233-242(in Chinese with English abstract)
Hanski E,Kamenetsky V.S,Luo Z.Y,Xu Y.G,Kuzmin D.V.2010. Primitive magmas in the Emeishan Large Igneous Province,southwestern China and northern Vietnam[J].Lithos,119:75-90
HeBin,Xu Yi- gang,Wang Ya - mei,Luo Zhen -yu.2006.Sedimentation and lithofacies paleogeography in South Western China before and after the Emeishan Flood Volcanism:new insights into surface response to mantle plume activity[J].Journal of Geology,114:117-132(in Chinese with English abstract)
Horbe A,Costa M.1999.Geochemical evolution of a lateritic Sn-Zr-Th-Nb -Y-REE-bearing ore body derived from apogranite:the case of Pitinga,Amazonas Brazil[J].Journal of Geochemical Exploration,66:339-351 Karada? Muzaffer M,Küpeli S Aryk F,Ayhan A,Zedef V,Doyen A.2009.Rare earth element(REE)geochemistry and genetic implications of the Mortas bauxite deposit(Seydisehir/Konya-Southern Turkey)[J].Chemie der Erde,69:143-159.
Kurtz A C,Derry L A,Chadwick O.A,Alfano M.J.2000.Refractory element mobility in volcanic soils[J].Geology,28:683-686
Laskou M,Margomenou-Leonidopoulou G,Balek V.2005.Thermal characterization of bauxite samples[J].Journalof Thermal Analysis and Calorimetry,82:1-5
Laskou M.1991.Concentrations of rare earths in Greek bauxites[J].Acta Geologica Hungarica,34(4):195-404
Laskou M.2003.Geochemical and mineralogical characteristics of the bauxite deposits of Western Greece[J].Mineral Exploration and Sustainable Development,77(1):93-96
Liu Xue-fei,Wang Qing-fei,Deng Jun,Zhang Qi-zuan,Sun Si-lei,Meng Jian-yin.2010.Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits,western Guangxi,China[J].Journal of Geochemical Exploration,105:137-152
MacLean W H,Barrett T J.1993.Lithogeochemical techniques using immobile elements[J].Geochemical Exploration,48:109-133
MacLean W H,Bonavia F F,Sanna G.1997.Argillite debris converted to bauxite during karst weathering:evidence from immobile element geochemistry at the Olmedo Deposit,Sardinia[J].Mineralium Deposita,32:607-616
MacLean W H,Kranidiotis P.1987.Immobile elements asmonitors ofmass transfer in hydrothermal alteration:Phelps Dodgemassive sulfide deposit.Matagami[J].Quebec.Economical Geology,82:951-962
MacLean W H.1990.Mass change calculations in altered rock series[J]. Mineralium Deposita,25:44-49
Mameli P,Mongelli G,Oggiano G,Dinelli E.2007.Geological,geochemical and mineralogical features of some bauxite deposits from Nurra(Western Sardinia,Italy),insights on conditions of formation and parental af-finity[J].International Journal of Earth Science,96:887-902
McDonough W F,Sun S S.1995.Composition of the Earth[J].Chemical Geology,120:223-253
Meng Jian-yin,Wang Qing-fei,Liu Xue-fei,Sun Si-lei,Li Desheng,Zhao Zeng-yi,Yang Zhong-hua,Wu Jian -bin.2011.Mineralogy and geochemistry of the Pangjiazhuang bauxite deposit in Jiaokou county,Shanxi province[J].Geology and Exploration,47(4):0593-0604(in Chinese with English abstract)
Mordberg L E.2001.Mineralogy and geochemistry of trace elements in bauxites:the Devonian Schugorsk deposit,Russia[J].Mineralogical Magazine,65(1):81-101
Mutakyahwa M K D,Ikingura J R,Mruma A H.2003.Geology and geochemistry of bauxite deposits in Lushoto District,Usambara Mountains,Tanzania[J].Journal of African Earth Sciences,36:357-369
?zlü N.1983.Trace element contents of karst bauxites and their parent rocks in the Mediterranean belt[J].Mineralium Deposita,18:469-476
?ztürk H,Hein J.2002.Genesis of the Do?nkuzu and Mortas Bauxite Deposits,Taurides,Turkey:separation of Al,F(xiàn)e,and Mn and implications for passive margin metallogeny[J].Economic Geology,97:1063-1077
Panahi A,Young G M,Rainbird R H.2000.Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Quebec,Canada[J].Geochimica et Cosmochimica Acta,64(13):2199-2220 Rudnick R L,Gao S.2003.Composition of the continental crust.In:Rudnick R L,ed.Treatise on Geochemistry[M].Oxford:Elsevier-Pergamon:1-64
Schroll E,Sauer D.1968.Beitrag zur Geochemie von Titan,Chrom,Nikel,Cobalt,Vanadium undMolibdan in Bauxitischen gestermenund problem der stofflichen herkunft des Aluminiums[J].Travaux du ICSOBA,5:83-96
Shaw D M.1964.Interprétation géochemique des éléments en traces dans les roches cristallines[M].Masson et Cie,Paris:237
Shellnutt J G.,Zhou Mei-fu.2007.Permian peralkaline,peraluminous and metaluminous A-type granites in the Panxi district,SW China: Their relationship to the Emeishan mantle plume[J].Chemical Geology,243:286-316
Sun S.S,McDonough W.F.1989.Chemical and isotopic systematics of
oceanic basalts:implications for mantle composition and processes.In: Saunders,A.D,Norry,M.J.Eds,Magmatism in Ocean Basins[J].London:Geol.Soc.Spec.Publ.:313-345
Temur S,Kansun G.2006.Geology and petrography of the Masatdagi diasporic bauxites,Alanya,Antalya,Turkey[J].Journal of Asian Earth Sciences,27:512-522
Valeton I,Biermann M,Reche R,Rosenberg F.1987.Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous,and their relation to ultrabasic parent rocks[J].Ore Geology Reviews,2:359-404
Xu Yi-gang,Luo Zhen-yu,Huang Xiao-long,He Bin,Xiao Long,Xie Lie-wen,Shi Yu-ruo.2008.Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J].Geochimica et Cosmochimica Acta,72:3084-3104
Zhang Zhao-chong,Mao Jing-wen,Saunders A.D,Ai Yu,Li Ying,Zhao Li.2009.Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province,SW China,based on isotopic and bulk chemical constraints[J].lithos,113:369-392
Zhong Hong,Zhu Wei-guang,Chu Zhu-yin,He De-feng,Song Xieyan.2007.SHRIMP U-Pb zircon geochronology,geochemistry,and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province,SW China[J].Chemical Geology,236:112-133
Zhong H,Yao Y,Hu S.F,Zhou X.H,Liu B.G,Sun M,Zhou M.F,Viljoen M.J.2003.Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Hongge layered intrusion,Southwestern China[J].International Geology Review,45:371-382
Zhou M F,Yan D P,Kennedy A K,Li Y,Ding J.2002.SHRIMP zircon geochronological and geochemical evidence for neo-proterozoic arc -related magmatism along the western of the Yangtze block,South China[J].Earth and Planetary Science Letters,196:51-67
[附中文參考文獻(xiàn)]
馮曉宏,王臣興,崔子良,劉宇淳,張興恒.2009.滇東南鋁土礦成礦物質(zhì)來源探討[J].云南地質(zhì),28(3):233-242
孟健寅,王慶飛,劉學(xué)飛,孫思磊,李德勝,趙增益,楊中華,武建斌. 2011.山西交口縣龐家莊鋁土礦礦物學(xué)與地球化學(xué)研究[J].地質(zhì)與勘探,47(4):593-604