唐美蘭,劉心歌
(中南大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖南長沙 410083)
一類具偏差變元的p-Laplacian方程的周期解*
唐美蘭,劉心歌?
(中南大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖南長沙 410083)
應(yīng)用Manásevich-Mawhin連續(xù)性定理,研究了具偏差變元的含有2個p-Laplacian算子的微分方程周期解的存在性,獲得了周期解存在的新的充分性條件,并通過實例說明本文結(jié)論的有效性.
周期系統(tǒng);p-Laplacian算子;周期解;存在性;Manásevich-Mawhin連續(xù)定理
近年來,Rayleigh方程、Liénard型方程、Duffing方程因其具有廣泛的實際應(yīng)用背景,很多學(xué)者對其周期解的存在性問題一直懷著強烈的興趣,得到了很多結(jié)論[1-9].但因p-Laplacian算子的非線性,目前對具偏差變元的p-Laplacian方程周期解的存在性研究并不多.本文將研究含多個p-Laplacian算子的偏差變元p-Laplacian微分方程周期解的存在性問題.
考慮下列含多個p-Laplacian算子且具偏差變元的微分方程:
2π-周期解的存在性.其中f為定義在R上的實連續(xù)函數(shù),p>p1>1,φp:R→R,φp(s)=|s|p-2s,s≠0,φp(0)=0,φp1:R→R,φp1(s)=|s|p1-2s,s≠0,φp1(0)=0,g是定義在R2上的連續(xù)函數(shù),關(guān)于t是周期的且g(t,·)=g(t+2π,·),?t∈R.e,τ是定義在R上的連續(xù)2π-周期函數(shù).
例1 考慮下列方程:
本文應(yīng)用Manásevich-Mawhin的連續(xù)性定理和一些分析技巧,在沒有f(0)=0和的條件下,得到了p-Laplacian方程(3)存在2π-周期解的新的充分性條件.
[1] LIU Bing-wen.Periodic solutions for Liénard type p-Laplacian equation with a deviating argument[J].Journal of Computational and Applied Mathematics,2008,214(1):13-18.
[2] LU Shi-ping.New results on the existence of periodic solutions to a p-Laplacian differential equation with a deviating argument[J].Journal of Mathematical Analysis and Applications,2007,336(2):1107-1123.
[3] M?NASEYICH R,MAWHIN J L.Periodic solutions for nonlinear systems with p-Laplacian-like operators[J].Journal of Differential Equations,1998,145(2):367-393.
[4] ZHANG Fu-xing,LI Ya.Existence and uniqueness of periodicsolutions for a kind of Duffing type p-Laplacian equation[J].Nonlinear Analysis:Real World Applications,2008,9(1):985-989.
[5] ZHOU Ying-gao,TANG Xian-hua.Periodic solutions for a kind of Rayleigh equation with a deviating argument[J].Computers &Mathematics with Applications,2007,53(5):825-830.
[6] ZONG Ming-gang,LIANG Hong-zhen.Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments[J].Applied Mathematics Letters,2007,20(1):43-47.
[7] XIAO Bing,LIU Bing-wen.Periodic solutions for Rayleigh type p-Laplacian equation with a deviating argument[J].Nonlinear Analysis:Real World Applications,2009,10(1):16-22.
[8] WANG Gen-qiang,YAN Ju-rang.On existence of periodic solutions of the Rayleigh equation of retarded type[J].The International Journal of Mathematics and Mathematical Sciences,2000,23(1):65-68.
[9] WANG Gen-qiang,CHENG Sui-sun.A priori bounds for periodic solutions of a delay Rayleigh equation[J].Applied Mathematics Letters,1999,12(3):41-44.
Periodic Solutions for a Kind of p-Laplacian Equation with a Deviating Argument
TANG Mei-lan,LIU Xin-ge?
(School of Mathematics and Statistics,Central South Univ,Changsha,Hunan 410083,China)
The existence of periodic solutions for a kind of p-Laplacian differential equation with two p-Laplacian operators was investigated.Based on Manásevich-Mawhin continuation theorem and some analysis skills,new sufficient conditions for the existence of periodic solutions were given.An example was provided to demonstrate the effectiveness of the proposed result.
periodic systems;p-Laplacian operators;periodic solutions;existence;Manásevich- Mawhin continuation theorem
O175.6
A
1674-2974(2012)08-0090-03*
2011-07-10
國家自然科學(xué)基金資助項目(61070190);中南大學(xué)前沿研究計劃資助項目(2010QZZD015);國家社會科學(xué)基金資助項目(10BJL020)
唐美蘭(1972-),女,湖南邵東人,中南大學(xué)副教授,博士
?通訊聯(lián)系人,E-mail:liuxgliuhua@163.com