王 穎 孫麗萍
(東北林業(yè)大學,哈爾濱,150040)
在中密度纖維板(MDF)生產(chǎn)過程中,將膠黏劑和其他添加劑(如防水劑、固化劑、緩沖劑、填充劑等)按比例均勻施加到構(gòu)成纖維板的基本單元上,稱為MDF施膠[1]。影響中密度纖維板產(chǎn)品質(zhì)量和生產(chǎn)成本的其中一個重要因素是膠黏劑組分配比的準確性、施膠量與原料配比的精確性。施膠系統(tǒng)能否按規(guī)定比例均勻施膠是衡量中密度纖維板施膠技術(shù)優(yōu)劣的標志。系統(tǒng)施膠量的不穩(wěn)定,會導致產(chǎn)品質(zhì)量不合格,浪費原料、增加生產(chǎn)成本。采用先進的施膠控制技術(shù),使膠的配比及用量自動接近或達到最佳狀態(tài),對降低成本、提高產(chǎn)品質(zhì)量有重要的現(xiàn)實意義[2-3]。因此,本文利用神經(jīng)網(wǎng)絡逆控制與經(jīng)典控制理論相結(jié)合的方法,設計出一種新的復合控制器來實現(xiàn)MDF的施膠控制。
傳統(tǒng)的逆控制方法需要了解被控對象精確的數(shù)學模型,才能構(gòu)造出被控系統(tǒng)的逆系統(tǒng)。而在實際生活中多數(shù)系統(tǒng)的模型是復雜或不確定的,這為構(gòu)造正確的逆模型帶了困難。神經(jīng)網(wǎng)絡逆控制原理為構(gòu)造逆模型帶來了新的方法,避免了構(gòu)造逆模型時對被控系統(tǒng)精確模型的要求。本文將MDF施膠系統(tǒng)作為被控系統(tǒng),利用BP網(wǎng)絡和若干積分器來逼近被控系統(tǒng)的逆系統(tǒng),然后將經(jīng)過訓練的神經(jīng)網(wǎng)絡逆系統(tǒng)串接在被控系統(tǒng)之前,對MDF施膠系統(tǒng)進行“線性化”處理。由逆系統(tǒng)與被控對象構(gòu)成的新系統(tǒng)通常是偽線性的,若是僅將神經(jīng)網(wǎng)絡逆控制系統(tǒng)作為單一的控制器,可能無法獲得良好的控制效果。由此筆者將PID控制器與神經(jīng)網(wǎng)絡逆系統(tǒng)結(jié)合在一起,構(gòu)建出神經(jīng)網(wǎng)絡逆復合控制器,并對MDF施膠系統(tǒng)進行控制和仿真試驗。
定義1[4]:設系統(tǒng)Πα為另一個具有映射關(guān)系為的q維輸入、p維輸出的系統(tǒng),其中,輸入φ(t)=(φ1,φ2,…,φq)T為一給定的連續(xù)函數(shù)向量,該向量的初值滿足于系統(tǒng)∑的初值條件,輸出u(t)=(u1,u2,…,up)T。如果取(α1,α2,…,αp)T,即 φi定義為ydi的 αi階導數(shù),且算子滿足下式:
則稱系統(tǒng)Πα為原系統(tǒng)∑的α階積分逆系統(tǒng),簡稱α階逆系統(tǒng)。
神經(jīng)網(wǎng)絡α階逆系統(tǒng)復合控制方法的主要思想是利用靜態(tài)神經(jīng)網(wǎng)絡加若干時延因子或積分器來實現(xiàn)α階逆系統(tǒng)的功能,其中靜態(tài)神經(jīng)網(wǎng)絡僅用來逼近靜態(tài)非線性函數(shù),時延因子或積分器則用于反映系統(tǒng)的動態(tài)特性;然后將α階逆系統(tǒng)與被控系統(tǒng)串聯(lián)在一起,就可以構(gòu)成具有α階積分特性的偽線性復合系統(tǒng)s-α,如圖1所示。此時對非線性、參數(shù)不確定的系統(tǒng)的控制問題已經(jīng)轉(zhuǎn)化為對線性系統(tǒng)的控制。然后運用經(jīng)典控制理論中的各種方法,針對新構(gòu)成的偽線性復合系統(tǒng),設計出合適的附加線性控制器,最后將神經(jīng)網(wǎng)絡α階逆系統(tǒng)與附加線性控制器組合起來,構(gòu)成復合控制器,從而實現(xiàn)對被控系統(tǒng)的有效控制[5-6]。
圖1 基于α階逆系統(tǒng)的SISO系統(tǒng)線性化示意圖
對于滿足一定條件的未知的單輸入單輸出、離散或連續(xù)線性、非線性系統(tǒng),神經(jīng)網(wǎng)絡α階逆系統(tǒng)控制方法均可使用。神經(jīng)網(wǎng)絡α階逆系統(tǒng)控制方法的優(yōu)勢在于無須知道被控系統(tǒng)或逆系統(tǒng)的數(shù)學模型,只要滿足被控系統(tǒng)的逆系統(tǒng)存在且唯一這一條件即可,避免了傳統(tǒng)的逆系統(tǒng)方法不僅需要知道原系統(tǒng)的數(shù)學模型,而且需要知道逆系統(tǒng)的數(shù)學模型的需求。因而神經(jīng)網(wǎng)絡α階逆系統(tǒng)控制方法具有較廣的應用范圍。
作為原系統(tǒng)的MDF施膠系統(tǒng)開環(huán)模型包括變頻器、異步電動機、膠泵管道3個環(huán)節(jié)。如圖2所示,MDF施膠系統(tǒng)的輸入為變頻器的給定頻率,輸出為施膠量。異步電機由變頻器供電,改變變頻器的頻率就可以方便地調(diào)節(jié)電機的轉(zhuǎn)速,實現(xiàn)對施膠量的調(diào)控。在實際中,施膠系統(tǒng)的穩(wěn)態(tài)增益和階躍響應是隨著膠液流量大小的變化而變化。因此MDF施膠系統(tǒng)是一個典型的單輸入單輸出非線性系統(tǒng)。
圖2 MDF施膠系統(tǒng)開環(huán)模型
構(gòu)造神經(jīng)網(wǎng)絡逆復合控制器的主要工作是設計并實現(xiàn)神經(jīng)網(wǎng)絡逆系統(tǒng)。實施神經(jīng)網(wǎng)絡逆控制的前提是確定被控系統(tǒng)是否可逆。對于離散的非線性單輸入單輸出系統(tǒng):
y(k+1)=f[y(k),…,y(k-n),u(k),…,u(k-m)]。
式中:y(k)∈R、u(k)∈R分別是系統(tǒng)的輸出和輸入;n為系統(tǒng)階次;m為輸入延遲,m≤n;f是一非線性函數(shù)。
給定[y(k),…,y(k-n),u(k),…,u(k-m)],當任意的輸入u1≠u2,有:
f[y(k),…,y(k-n),u1(k),…,u1(k-m)]≠f[y(k),…,y(k-n),u2(k),…,u2(k-m)],則稱該系統(tǒng)是可逆的[7]。
當MDF施膠系統(tǒng)的輸入量r(t)是給定頻率,輸出量y(t)是施膠量輸出信號時,對于不同的輸入,系統(tǒng)的輸出不同,即對于任意輸入r1(t)≠r2(t),有y1(t)≠y2(t),因此,可以判斷該系統(tǒng)是可逆的。
由于MDF施膠系統(tǒng)結(jié)構(gòu)之間通常存在滯后、外界干擾等多種因素,很難獲得精確的數(shù)學模型。當被控系統(tǒng)的數(shù)學模型無法準確獲知時,可通過對被控對象的動態(tài)特性分析或根據(jù)先驗知識和經(jīng)驗確定被控系統(tǒng)的階數(shù)和相對階,從而直接構(gòu)造神經(jīng)網(wǎng)絡逆系統(tǒng)。根據(jù)參考文獻[8]可知,MDF施膠系統(tǒng)的開環(huán)系統(tǒng)控制模型一般在2~4階之間變化,在中頻工況(輸入25 Hz和30 Hz激勵)下的MDF施膠系統(tǒng)一般為3階系統(tǒng)。根據(jù)實際設備的動態(tài)特性以及工藝的變化對系統(tǒng)結(jié)構(gòu)進行調(diào)整,其相對階α在0~3階變化。將訓練好的神經(jīng)網(wǎng)絡逆系統(tǒng)串接在原系統(tǒng)之前構(gòu)成α階線性系統(tǒng),這樣就將原系統(tǒng)轉(zhuǎn)化成為y=s-αφ(s)型的線性單輸入單輸出系統(tǒng)。
由于在神經(jīng)網(wǎng)絡逆模型辨識中存在一定的誤差,并且神經(jīng)網(wǎng)絡逆系統(tǒng)與被控系統(tǒng)復合而成的新系統(tǒng)通常不是一個理想的線性系統(tǒng),而是有著固有物理特性的“近似”線性化的系統(tǒng),雖然將神經(jīng)網(wǎng)絡逆系統(tǒng)直接作為單一的控制器可以使系統(tǒng)的構(gòu)造簡單化,但其實際的控制效果很難達到理想要求。所以不能簡單地將神經(jīng)網(wǎng)絡逆控制系統(tǒng)作為唯一的控制器,必須設計附加控制器與神經(jīng)網(wǎng)絡逆系統(tǒng)一起組成神經(jīng)網(wǎng)絡逆復合控制器,從而使系統(tǒng)獲得優(yōu)良的靜、動態(tài)特性與抗干擾能力。根據(jù)經(jīng)典控制理論,采用常見的PID控制器作為附加控制器。PID反饋控制在控制作用補償、魯棒性方面起了主要作用,進一步實現(xiàn)了對“近似”線性化系統(tǒng)的控制,在一定程度上改善或提高了被控系統(tǒng)的性能。
MDF施膠神經(jīng)網(wǎng)絡逆復合控制系統(tǒng)的基本結(jié)構(gòu)可以用圖3表示,逆系統(tǒng)由靜態(tài)神經(jīng)網(wǎng)絡加若干積分器來實現(xiàn)α階逆系統(tǒng)的功能,積分因子個數(shù)由相對階α決定。復合控制器包括神經(jīng)網(wǎng)絡逆系統(tǒng)本身與作為附加控制器的PID控制器兩個部分。
確定了靜態(tài)神經(jīng)網(wǎng)絡逆系統(tǒng)的結(jié)構(gòu)后,還需要對神經(jīng)網(wǎng)絡逆系統(tǒng)進行學習、訓練,使靜態(tài)神經(jīng)網(wǎng)絡真正實現(xiàn)其要逼近的非線性運算。一旦靜態(tài)神經(jīng)網(wǎng)絡能達到此目的,則由靜態(tài)神經(jīng)網(wǎng)絡加上積分器構(gòu)成的神經(jīng)網(wǎng)絡逆系統(tǒng)就真正成為被控系統(tǒng)的逆系統(tǒng)。神經(jīng)網(wǎng)絡逆模型的輸入是施膠量,輸出是變頻器的頻率。根據(jù)參考文獻[9],將Gs=((0.008 438s+0.3)e-3.73)/(s2+1.382s+0.162 7)作為施膠系統(tǒng)的理想模型進行仿真研究。給理想模型輸入一個25 Hz的激勵信號,并采樣得到1 000個數(shù)據(jù)樣本。其中500個樣本用來在Matlab中訓練逆模型,另外500個用于測試逆模型。MDF施膠系統(tǒng)的逆模型仿真在Matlab的Simullnk環(huán)境下進行,施膠系統(tǒng)神經(jīng)網(wǎng)絡逆模型的模塊通過子系統(tǒng)封裝的方式實現(xiàn)。
圖3 MDF施膠系統(tǒng)的神經(jīng)網(wǎng)絡逆控制結(jié)構(gòu)
圖4為MDF施膠系統(tǒng)的靜態(tài)神經(jīng)網(wǎng)絡逆系統(tǒng)的離線訓練示意圖。靜態(tài)神經(jīng)網(wǎng)絡的離線訓練包括兩個部分內(nèi)容:對原系統(tǒng)的激勵和對靜態(tài)神經(jīng)網(wǎng)絡的離線訓練。圖4中的微分器S,用于網(wǎng)絡獲取相應的各階導數(shù),其個數(shù)同樣由相對階α決定。根據(jù)理想模型,本文在仿真中采用了1個3層前饋神經(jīng)網(wǎng)絡和1個積分因子組成神經(jīng)網(wǎng)絡α階逆系統(tǒng)。靜態(tài)神經(jīng)網(wǎng)絡有2個輸入結(jié)點、1個輸出結(jié)點和1個隱層,隱層的結(jié)點數(shù)為7。
圖4 神經(jīng)網(wǎng)絡逆系統(tǒng)的離線訓練示意圖
本文對神經(jīng)網(wǎng)絡逆復合控制的控制效果進行了仿真,圖5為神經(jīng)網(wǎng)絡逆復合控制的單位階躍響應曲線。對于MDF施膠系統(tǒng)來說,最關(guān)心的是超調(diào)量、上升時間這兩個指標。系統(tǒng)是否能夠快速響應達到穩(wěn)定,直接影響生產(chǎn)的產(chǎn)品質(zhì)量和成本。超調(diào)量越低,上升時間越短,施膠系統(tǒng)就越穩(wěn)定;施膠量越穩(wěn)定,原料浪費程度越低。由圖5可以看出,在無干擾情況下,神經(jīng)網(wǎng)絡逆復合控制方法的超調(diào)量低于5%,控制系統(tǒng)階躍響應的上升時間比較短。體現(xiàn)出神經(jīng)網(wǎng)絡逆復合控制方法對系統(tǒng)具有很好的控制效果。
圖5 神經(jīng)網(wǎng)絡逆復合控制單位階躍響應曲線
對于施膠系統(tǒng)來說,僅是系統(tǒng)的階躍響應并不能反映出系統(tǒng)是否具有良好的穩(wěn)定性和跟蹤性。因此給復合控制系統(tǒng)施加一個不規(guī)則方波輸入信號,它的跟蹤特性如圖6所示。虛線代表輸入信號波形,實線代表輸出信號波形。當給定信號幅值與頻率都改變時,系統(tǒng)能夠?qū)o定信號實現(xiàn)有效的跟蹤。
圖6 神經(jīng)網(wǎng)絡逆復合控制方波響應曲線
以上是在無干擾情況下的系統(tǒng)仿真。為了考察復合控制施膠系統(tǒng)的抗干擾性,本文在復合系統(tǒng)的通道中施加了一個持續(xù)的不規(guī)則干擾信號。對系統(tǒng)施加擾動后方波響應曲線為圖7所示,與圖6比較,方波變化不明顯。由此可以看出,神經(jīng)網(wǎng)絡逆復合系統(tǒng)具有很強的抗干擾能力。
為驗證所設計的復合控制器的控制效果,本文在東北林業(yè)大學研制的MDF—1型中密度纖維板調(diào)施膠過程控制系統(tǒng)實驗裝置上進行了試驗。系統(tǒng)的膠液流量設定值設置為9.00 L/min,當施膠流量(施膠流量是通過電磁流量計對施膠量進行測量)輸出穩(wěn)定時,每隔30 s記錄1次數(shù)據(jù),如表1所示。由表1可以看出,本文所建立的系統(tǒng)模型的實際輸出可以較好地接近系統(tǒng)的設定值。這說明采用神經(jīng)網(wǎng)絡逆復合控制對中密度纖維板施膠系統(tǒng)進行控制的方法是可行的。
圖7 對復合控制系統(tǒng)施加干擾后的方波響應曲線
表1 仿真試驗結(jié)果
針對MDF施膠系統(tǒng),本文使用神經(jīng)網(wǎng)絡求取逆模型,并結(jié)合經(jīng)典控制理論設計出一種新型的復合控制器模型。神經(jīng)網(wǎng)絡逆系統(tǒng)控制方法的優(yōu)勢在于無須知道被控系統(tǒng)或逆系統(tǒng)的數(shù)學模型,只需了解被控系統(tǒng)的動態(tài)特性或根據(jù)先驗知識和經(jīng)驗確定被控系統(tǒng)的階數(shù)和相對階,即可實現(xiàn)神經(jīng)網(wǎng)絡逆系統(tǒng)的直接構(gòu)造,避免了逆系統(tǒng)求取困難的問題,并體現(xiàn)出神經(jīng)網(wǎng)絡逆控制方法具有較廣的應用范圍。根據(jù)神經(jīng)網(wǎng)絡逆控制具有結(jié)構(gòu)簡單、抗干擾能力強、魯棒性好的優(yōu)點,同時結(jié)合PID快速響應、可靠性高的優(yōu)勢,設計出適用于MDF施膠系統(tǒng)的神經(jīng)網(wǎng)絡逆復合控制器。經(jīng)過仿真驗證,所設計的神經(jīng)網(wǎng)絡逆復合系統(tǒng)響應時間短、超調(diào)量小,具有良好的穩(wěn)定性和跟蹤性,抗干擾能力強,可滿足施膠系統(tǒng)的工藝要求,為MDF施膠系統(tǒng)的控制方法提供了一個新的思路。
[1]花軍,曹軍,唐鉉峰.纖維板的調(diào)施膠技術(shù)[J].東北林業(yè)大學學報,2005,33(1):96-98.
[2]孫延明,劉亞秋.淺析中密度纖維板施膠控制研究現(xiàn)狀[J].木工機床,2006(2):15-17.
[3]祖海燕,陳雪梅,張怡卓.中密度纖維板調(diào)施膠技術(shù)的應用和發(fā)展趨勢[J].木工機床,2007(2):10-13.
[4]戴先中.多變量非線性系統(tǒng)的神經(jīng)網(wǎng)絡逆控制方法[M].北京:科學出版社,2005.
[5]劉軍,戴先中.神經(jīng)網(wǎng)絡α階逆系統(tǒng)控制方法的可行性[J].電力系統(tǒng)自動化,1997,21(5):15-18.
[6]戴先中,劉軍.神經(jīng)網(wǎng)絡α階逆系統(tǒng)的結(jié)構(gòu)、辨識及其在控制中的應用[J].電力系統(tǒng)自動化,1997,21(7):1-4.
[7]祖海燕,孫麗萍,劉德勝.基于支持向量機中纖板施膠系統(tǒng)逆模型的辨識[J].林業(yè)科學,2010,46(2):171-174.
[8]劉德勝.刨花板施膠動力學特性分析與魯棒控制研究[D].哈爾濱:東北林業(yè)大學,2009.
[9]郭繼寧,朱良寬,孫麗萍.基于LMI的刨花板施膠魯棒H∞控制[J].東北林業(yè)大學學報,2010,38(6):84-86.