葉珍霞
(海軍駐武漢地區(qū)軍事代表局,湖北 武漢 430060)
開孔泡沫鋁水下吸聲性能實(shí)驗(yàn)
葉珍霞
(海軍駐武漢地區(qū)軍事代表局,湖北 武漢 430060)
對(duì)水飽和與空氣飽和開孔泡沫鋁進(jìn)行水下吸聲性能實(shí)驗(yàn)研究,比較了厚度和3種不同背襯(空氣背襯、水背襯和鋼背襯)對(duì)其吸聲性能的影響。實(shí)驗(yàn)發(fā)現(xiàn),在500~4 000 Hz范圍內(nèi),空氣飽和開孔泡沫鋁水下吸聲性能相對(duì)較好,水飽和開孔泡沫鋁的水下吸聲性能很弱。厚度和背襯對(duì)空氣飽和開孔泡沫鋁的吸聲性能影響明顯,對(duì)水飽和開孔泡沫鋁的吸聲性能影響很小。水飽和開孔泡沫鋁不宜用作水下低頻吸聲材料,而將空氣飽和開孔泡沫鋁用作水下吸聲材料時(shí),應(yīng)采取有效的防護(hù)措施,避免水滲入內(nèi)部。否則,開孔泡沫鋁吸聲性能將嚴(yán)重降低。
開孔泡沫鋁;水下吸聲;空氣飽和;水飽和;背襯
泡沫金屬是一種在金屬骨架里無序分布著大量孔洞的新型材料。它實(shí)現(xiàn)了結(jié)構(gòu)材料的輕質(zhì)多功能化,是當(dāng)前高技術(shù)領(lǐng)域熱點(diǎn)材料之一。泡沫金屬具有優(yōu)良的綜合性能:重量輕(等效密度可以小于水)、高比強(qiáng)度、高比剛度、高能量吸收、阻尼減振及電磁屏蔽等[1]。多孔介質(zhì)聲學(xué)也是非常活躍的應(yīng)用性強(qiáng)的聲學(xué)分支之一[2],開孔泡沫金屬作為一種新型多孔介質(zhì),受到國(guó)內(nèi)外聲學(xué)研究者的廣泛關(guān)注。
據(jù)已有的文獻(xiàn)介紹,絕大部分研究集中于泡沫金屬的空氣吸聲問題[3-9],僅有少量的研究集中于開孔泡沫金屬水下吸聲性能[10-13]。程桂萍、何德坪等進(jìn)行過泡沫鋁水中吸聲性能的實(shí)驗(yàn)研究[10-11]。實(shí)驗(yàn)結(jié)果表明,吸聲系數(shù)隨著孔徑的減小和樣品厚度的增加而增加,穿孔率為75% ~80%的泡沫鋁吸聲系數(shù)最好,但低頻吸聲性能并不理想。王曉林建立了1個(gè)基本的水下吸聲優(yōu)化模型,通過合理選擇參數(shù),粘性流體飽和的多孔金屬在低頻也具有有效的水下吸聲性能[12-13]。
然而,泡沫金屬作為一種新型多孔介質(zhì),在水聲工程中的應(yīng)用還有許多問題尚待研究。如開孔泡沫金屬內(nèi)部的填充狀態(tài)對(duì)水下吸聲性能的影響如何?此外,從聲學(xué)理論可知,泡沫金屬的水下吸聲性能與厚度和背襯有很大關(guān)系,那么背襯對(duì)不同狀態(tài)下的泡沫金屬的吸聲性能又有何影響?為了說明上述問題,本文對(duì)水飽和與空氣飽和開孔泡沫鋁開展了水下吸聲性能實(shí)驗(yàn)研究,比較了厚度和3種不同背襯(空氣背襯、水背襯和鋼背襯)對(duì)其吸聲性能的影響。
開孔泡沫鋁聲學(xué)性能的測(cè)量采用雙水聽器傳遞函數(shù)法。圖1為水聲聲管測(cè)試系統(tǒng)原理圖。在聲管的入射段和透射段測(cè)得復(fù)聲壓,把管內(nèi)駐波場(chǎng)中正反傳播的2列波分離開來。把透射段分離出來的透射波和入射段分離出來的入射波進(jìn)行對(duì)比便得到聲壓透射系數(shù)。把入射段分離出來的反射波和入射波進(jìn)行對(duì)比便得到聲壓反射系數(shù)。
圖1 水聲聲管隔聲量測(cè)試系統(tǒng)Fig.1 The sketch of experimental measuring system
在測(cè)試過程中,為提高系統(tǒng)信噪比從而提高測(cè)試精度,采用單頻激勵(lì)的方法。由信號(hào)源發(fā)出單頻正弦波信號(hào),經(jīng)功率放大器放大后激勵(lì)水聲發(fā)射換能器,向聲管內(nèi)發(fā)射出一列正弦波。測(cè)試頻率范圍為500~4 000 Hz,間隔100 Hz。聲管內(nèi)入射段存在入射波pi和反射波pr,透射段內(nèi)則存在透射波pt和透射反射波p2r。4個(gè)水聽器所接收的信號(hào)經(jīng)數(shù)據(jù)集儀采集后送至計(jì)算機(jī)分析,計(jì)算出被測(cè)試樣的透射系數(shù)和反射系數(shù)。
其中,透射系數(shù)t定義為法向入射平面波透過試件后透射波在試件背面處的聲壓與入射波在基準(zhǔn)面上的聲壓的復(fù)數(shù)比值,反射系數(shù)r定義為法向入射平面波在試件入射面上的反射波聲壓與入射波聲壓的復(fù)數(shù)比值,吸聲系數(shù)α定義為法向入射平面波進(jìn)入試件表面后被吸收的聲功率與入射聲功率的比值,即α=1-r2-t2。
圖2 厚度分別為10 mm和30 mm開孔泡沫鋁試樣Fig.2 Open-celled al foam samples
實(shí)驗(yàn)的研究對(duì)象為2個(gè)厚度分別為10 mm和30 mm,直徑為118 mm的開孔泡沫鋁,如圖2所示。2個(gè)試樣的質(zhì)量、孔隙率、孔徑、樣品尺寸和等效密度等主要參數(shù)如表1所示。2個(gè)開孔泡沫鋁試樣的孔隙率、孔徑和等效密度近似相同。開孔泡沫鋁水下聲學(xué)性能實(shí)驗(yàn)分2種情況:一是空氣飽和試樣,實(shí)驗(yàn)時(shí)用聚酯薄膜將開孔泡沫鋁試樣表面封孔,使水不能進(jìn)入;二是水飽和試樣,將開孔泡沫鋁放入水聲聲管,經(jīng)充分浸潤(rùn)后進(jìn)行測(cè)試。測(cè)試時(shí),試樣的背部狀態(tài)分水背襯、空氣背襯和24 mm厚的鋼背襯3種。
?
圖3給出了30 mm厚空氣飽和與水飽和開孔泡沫鋁在水背襯條件下的吸聲系數(shù)曲線。圖中虛線和實(shí)線分別為空氣飽和與水飽和開孔泡沫鋁吸聲系數(shù)曲線。從圖3可看出,開孔泡沫鋁的內(nèi)部填充狀態(tài)對(duì)水下吸聲性能有明顯的影響??諝怙柡烷_孔泡沫鋁試樣的吸聲性能較好,在500~4 000 Hz范圍內(nèi),吸聲系數(shù)隨頻率呈振蕩上升的趨勢(shì),平均吸聲系數(shù)為0.54。水飽和開孔泡沫鋁試樣吸聲性能較差,在500~4 000 Hz范圍內(nèi),吸聲系數(shù)隨頻率呈相對(duì)平坦的趨勢(shì),平均吸聲系數(shù)為0.18。
圖3 開孔泡沫鋁在水背襯條件下的吸聲系數(shù)曲線Fig.3 Frequency variation of absorption coefficient of open-celled al foam with water backing
圖4和圖5分別比較了1 cm和3 cm厚空氣飽和開孔泡沫鋁、水飽和開孔泡沫鋁在水背襯條件下的吸聲系數(shù)曲線。圖中虛線為1 cm厚泡沫鋁吸聲系數(shù)曲線,實(shí)線為3 cm厚泡沫鋁吸聲系數(shù)曲線。從圖4可看出,厚度對(duì)空氣飽和開孔泡沫鋁的吸聲性能影響較大,從整體上講,厚度越大,吸聲系數(shù)越大。從圖5可看出,厚度對(duì)水飽和開孔泡沫鋁和閉孔泡沫鋁的吸聲性能影響較小。
圖4 厚1 cm和3 cm空氣飽和開孔泡沫鋁吸聲系數(shù)比較Fig.4 Absorption coefficient of air-saturated open-celled al foam samples
圖5 厚1 cm和3 cm水飽和開孔泡沫鋁吸聲系數(shù)比較Fig.5 Absorption coefficient of water-saturated open-celled al foam samples
一般來說,背襯對(duì)材料的吸聲性能有較大的影響[14]。圖6和圖7比較了3種不同背襯(空氣背襯、水背襯和24 mm厚鋼背襯)條件下30 mm厚空氣飽和與水飽和開孔泡沫鋁的水下吸聲系數(shù)曲線。圖中虛線、點(diǎn)劃線和實(shí)線分別為空氣背襯、水背襯和24 mm厚鋼背襯時(shí)開孔泡沫鋁的吸聲系數(shù)曲線。從圖6中可看出,背襯對(duì)空氣飽和開孔泡沫鋁的吸聲性能影響明顯,吸聲峰值的位置和大小發(fā)生了明顯的變化。從圖7中可看出,背襯對(duì)水飽和開孔泡沫鋁的吸聲性能影響很小。
本文對(duì)水飽和與空氣飽和開孔泡沫鋁開展了水下吸聲性能實(shí)驗(yàn)研究,比較了厚度和3種不同背襯(空氣背襯、水背襯和鋼背襯)對(duì)其吸聲性能的影響。實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),在500~4 000 Hz范圍內(nèi),空氣飽和開孔泡沫鋁水下吸聲性能相對(duì)較好,水飽和開孔泡沫鋁的水下吸聲性能很弱。厚度和背襯對(duì)空氣飽和開孔泡沫鋁的吸聲性能影響明顯,對(duì)水飽和開孔泡沫鋁的吸聲性能影響不大。對(duì)水飽和開孔泡沫鋁的吸聲性能影響很小。
水飽和開孔泡沫鋁不宜用作水下低頻吸聲材料,而將空氣飽和開孔泡沫鋁用作水下吸聲材料時(shí),應(yīng)采取有效防護(hù)措施,避免水滲入內(nèi)部。否則,開孔泡沫鋁將喪失吸聲功能。
[1]LEFEBVRE L P,BANHART J,DUNAND D C.Porous metals and metallic foams:current status and recent developments[J].Advanced Engineering Materials,2008,10(9):775-787.
[2]ARENAS J P,CROCKER M J.Recent trends in porous sound-absorbing materials[J].Sound & Vibration,2010,(6):12-17.
[3]LU T J,HESS A,ASHBY M F.Sound absorption in metallic foams[J].Journal of Applied Physics,1999,85(11):7528-7539.
[4]LU T J,CHEN F, HE De-ping.Sound absorption of cellular metals with semiopen cells[J].J.Acoust.Soc.Am,2000,108(4):1697-1709.
[5]CHEVILLOTTE F,PERROT C,et al.Microstructure based model for sound absorption predictions of perforated closedcell metallic foams[J].J.Acoust.Soc.Am,2010,128(4):1766-1776.
[6]HAN F,SEIFFERT G,ZHAO Yu-yuan,et al.Acoustic absorption behavior of an open-celled aluminium foam[J].Journal of Physics D:Applied Physics,2003,36:294-302.
[7]朱紀(jì)磊,湯慧萍,葛淵,等.多孔吸聲材料發(fā)展現(xiàn)狀與展望[J].功能材料,2007,38:3723-3726.
ZHU Ji-lei,TANG Hui-ping,GE Yuan,et al.Present research and prospect of porous absorption materials[J].Functional Materials,2007,38:3723-3726.
[8]SUN F,CHEN Hua-ling,WU Jiu-hui,F(xiàn)ENG Kai.Sound absorbing characteristics of fibrous metal materials at high temperatures[J].Applied Acoustics,2010,71:221-235.
[9]JAOUEN L,BéCOT F X.Reinforcement of acoustical material properties using multiple scales[C].Proceedings of SIA Conference,Le Mans,F(xiàn)ranco,2008.
[10]CHENG G P,He D P,SHU G J.Underwater sound absorption property of porous aluminum[J].Colloids and Surfaces A,Physicochemical and Engineering Aspects,2001,179(2-3):191-194.
[11]王月.孔結(jié)構(gòu)對(duì)通孔泡沫鋁水聲吸聲性能的影響[J].材料開發(fā)與應(yīng)用,2001,16(4):16-18.
WANG Yue.Influence of pore structures on the underwater sound absorbing properties of open pore foamed aluminum[J].Development and Application of Materials,2001,16(4):16-18.
[12]王曉林.金屬多孔材料吸聲板的優(yōu)化模型[J].聲學(xué)學(xué)報(bào),2007,32(2):116-121.
WANG Xiao-lin.An optimized model for porpous metal sound absorbers[J].Acta Acoustica,2007,32(2):116-121.
[13]WANG Xiao-lin.Porous metal absorbers for underwater sound[J].J.Acost.Soc.Am,2007,122(5):2626-2635.
[14]何世平,湯渭霖,何琳.水下吸聲覆蓋層聲管測(cè)試的背襯研究[J].應(yīng)用聲學(xué),2007,20(2):83-88.
HE Shi-ping,TANG Wei-lin,HE Lin.Effect of backing in the mesaurement of underwater anechoic coating with an acoustic[J].Applied Acoustics,2007,20(2):83-88.
Experimental study of underwater sound absorption of open-celled Al foam
YE Zhen-xia
(Wuhan Military Representative Bureau of Navy Equipment,Wuhan 430060,China)
Experimental study of underwater sound absorption coefficients of air-saturated and watersaturated open-celled Al foam are carried out.The influences of thickness and three kinds of backings(air backing,water backing,and steel backing)on underwater sound absorption performance are compared.The results show that the sound absorption performance of air-saturated open-celled Al foam is relatively good within the[500,4000]Hz frequency range,and that the sound absorption performance of water-saturated open-celled Al foam is relatively poor.The influences of thickness and backings on underwater sound absorption coefficients of air-saturated open-celled Al foam are very large,while the influences of thickness and backings on underwater sound absorption coefficients of water-saturated open-celled Al foam are very small.Water-saturated open-celled Al foam is not a good underwater sound absorption material.When airsaturated open-celled Al foam is used as underwater sound absorption material,some protect measurements must be taken to avoid water penetrating into its inner space.Otherwise,the underwater sound absorption performance of open-celled Al foam will degrade.
open-celled Al foam;underwater sound absorption;air-saturated;water-saturated;backing
TB34;TB535;O427
A
1672-7649(2012)04-0022-04
10.3404/j.issn.1672-7649.2012.04.005
2011-10-16;
2011-11-16
葉珍霞(1980-),男,碩士,工程師,研究方向?yàn)榕灤瑴p振降噪技術(shù)。