劉素 牛燕媚 傅力
天津醫(yī)科大學(xué)康復(fù)與運(yùn)動(dòng)醫(yī)學(xué)系(天津 300070)
環(huán)境因素與運(yùn)動(dòng)干預(yù)誘導(dǎo)表觀遺傳修飾改變與疾病易感性的關(guān)系
劉素 牛燕媚 傅力
天津醫(yī)科大學(xué)康復(fù)與運(yùn)動(dòng)醫(yī)學(xué)系(天津 300070)
經(jīng)濟(jì)發(fā)展引起的生活方式改變已導(dǎo)致我國(guó)居民肥胖、胰島素抵抗(Insulin Resistance,IR)和2型糖尿?。═ype 2 Diabetes,T2DM)等代謝性疾病發(fā)病率激增,成為影響我國(guó)人口健康和生活質(zhì)量的主要危險(xiǎn)因素之一。其中,兒童肥胖和T2DM的發(fā)病率增加最為明顯,已引起研究者的廣泛關(guān)注[1]。研究發(fā)現(xiàn),胎兒在母體子宮內(nèi)和其出生早期所處的環(huán)境因素影響著此類疾病發(fā)生的危險(xiǎn)性[2]。傳統(tǒng)觀點(diǎn)認(rèn)為,遺傳因素在細(xì)胞、組織和器官發(fā)育過(guò)程中起決定作用,然而,目前研究認(rèn)為傳統(tǒng)遺傳學(xué)因素已不足以解釋整個(gè)生物系統(tǒng)發(fā)育過(guò)程中的諸多現(xiàn)象[3]。最新研究發(fā)現(xiàn),歸因于表觀遺傳修飾的“胎兒時(shí)期的編程”可能是其成年后肥胖、T2DM、高血壓和心腦血管疾病(Cardiovascular Disease,CVD)發(fā)生的主要原因[4]。表觀遺傳學(xué)修飾的改變是環(huán)境因素與機(jī)體組織細(xì)胞內(nèi)染色體DNA之間發(fā)生交互作用的結(jié)果。表觀遺傳修飾的正常調(diào)控對(duì)生物體的正常發(fā)育、對(duì)有害因子(如理化因子、細(xì)菌和病毒等)侵襲組織細(xì)胞的防御功能等至關(guān)重要[5]。本文將就環(huán)境因素與運(yùn)動(dòng)干預(yù)誘導(dǎo)產(chǎn)生的表觀遺傳修飾改變及其與疾病易感性之間關(guān)系的最新研究進(jìn)展作一綜述。
表觀遺傳(Epigenetics)是指DNA序列不發(fā)生變化,但基因表達(dá)卻發(fā)生了可遺傳的改變。這種改變是細(xì)胞內(nèi)除了遺傳信息以外的其他可遺傳物質(zhì)發(fā)生的改變,且能在生物發(fā)育和細(xì)胞增殖過(guò)程中穩(wěn)定傳遞[5]。目前研究較多的表觀遺傳修飾主要包括DNA甲基化(DNA Methylation)、組蛋白修飾(Histone Modification)、染色質(zhì)重塑(Chromatin Remodeling)和非編碼RNA(Non-coding,ncRNA)調(diào)控等。DNA甲基化是指在DNA甲基轉(zhuǎn)移酶(DNA Methyltransferases,DNMT)的作用下,以S-腺苷甲硫氨酸為甲基供體在基因組CpG二核苷酸胞嘧啶5’碳位共價(jià)結(jié)合一個(gè)甲基基團(tuán)。通?;騿?dòng)子區(qū)富含CpG序列,其甲基化抑制基因表達(dá),而去甲基化則促進(jìn)基因表達(dá),并且這種甲基化狀態(tài)可在細(xì)胞有絲分裂過(guò)程中穩(wěn)定傳遞[6]。DNA纏繞在由8個(gè)組蛋白核心分子(H2A、H2B、H3和H4各兩個(gè)單體)構(gòu)成的八聚體上形成核小體,核小體是染色質(zhì)的基本組成單元。因此,組蛋白尾部的賴氨酸乙?;?、精氨酸或賴氨酸的甲基化、絲氨酸磷酸化或泛素化均可引起染色質(zhì)結(jié)構(gòu)的改變,隨之啟動(dòng)子結(jié)合基因轉(zhuǎn)錄位點(diǎn)的能力也發(fā)生改變,進(jìn)而引起基因表達(dá)的改變[7]。染色質(zhì)是細(xì)胞核中由DNA、組蛋白、非組蛋白組合而成的一種物質(zhì)。染色質(zhì)重塑是基因表達(dá)調(diào)控過(guò)程中所出現(xiàn)的一系列染色質(zhì)結(jié)構(gòu)變化的總稱。ncRNA是指不被翻譯成蛋白質(zhì)的 RNA,如轉(zhuǎn)運(yùn)RNA(Transfer RNA,tRNA)、核糖體RNA(Ribosomal RNA,rRNA)、微小RNA(miRNA)和長(zhǎng)非編碼RNA(Long non-coding RNA,lncRNA)等。最新研究表明,生殖細(xì)胞中的RNA,尤其是ncRNA攜帶的功能性表觀遺傳信息有跨代遺傳現(xiàn)象[8]。目前研究表明,很多因素可引起這些表觀遺傳修飾的改變,進(jìn)而導(dǎo)致基因表達(dá)和疾病易感性的改變[9]。
表觀遺傳修飾在生物發(fā)育和細(xì)胞分化過(guò)程中有關(guān)鍵作用,不僅因?yàn)樗姓{(diào)節(jié)基因組活性的功能,而且表觀基因組學(xué)標(biāo)志物穩(wěn)定通過(guò)有絲分裂的特性使其在細(xì)胞增殖中傳遞。與遺傳學(xué)相反,表觀遺傳很容易受到環(huán)境因素的影響[3]。研究表明,許多環(huán)境因素可引起表觀遺傳修飾的改變[10],如環(huán)境因素可通過(guò)改變甲基供體的可用性或者通過(guò)改變DNMT的活性影響DNA甲基化[11]。環(huán)境中的化合物包括內(nèi)分泌干擾劑藥物 (Endocrine Disruptor Chemicals,EDC)、己烯雌酚(Diethylstilbestrol,DES)、煙草和酒精均可引起表觀遺傳修飾改變[12,13]。發(fā)育異常和關(guān)鍵時(shí)期的暴露表明,環(huán)境因素有促進(jìn)其成年后疾病發(fā)生的作用。關(guān)鍵時(shí)期通常是指發(fā)育早期(如胎兒期和生后早期),這時(shí)器官系統(tǒng)發(fā)育很快,并對(duì)表觀基因組的微小變化很敏感[14],環(huán)境因素在這些關(guān)鍵時(shí)期可永久改變表觀基因組,影響基因表達(dá)進(jìn)而導(dǎo)致其成年后表型及疾病易感性的改變[15]。
2.1 環(huán)境中的化合物
流行病學(xué)資料顯示,孕期EDC暴露和表觀遺傳編程可能導(dǎo)致自身及其后代某些疾病的發(fā)生,其中研究較多的EDC是甲氧氯和烯菌酮。甲氧氯可通過(guò)增加DNMT的活性,尤其是DNMT3B的活性引起卵巢DNA高甲基化[16],烯菌酮可引起后代(F1-F3)精子表觀基因組的改變[17,18]。另外,孕期對(duì)烯菌酮暴露的后代易患內(nèi)分泌功能紊亂[19]。動(dòng)物模型研究表明,孕期大鼠在胚胎性腺發(fā)育時(shí)期對(duì)烯菌酮暴露,其雄性后代(F1-F4)高膽固醇血癥、精子發(fā)生缺陷、前列腺疾病、腎臟疾病、免疫系統(tǒng)功能紊亂和癌癥發(fā)生率升高[20-24],進(jìn)一步研究證實(shí)這些雄性后代的Germ line基因甲基化均發(fā)生了改變[20]。DES是首個(gè)被發(fā)現(xiàn)引起母系及其后代疾病的一種治療性藥物,可引起女性乳腺和生殖器腫瘤,并且這是由女性胎兒在宮內(nèi)發(fā)育過(guò)程中Germ line表觀遺傳修飾改變引起的。具體表觀遺傳標(biāo)記物在動(dòng)物模型中得到驗(yàn)證,Zeste基因增強(qiáng)子同源物2(Enhancer of Zeste Homolog 2,EZH2)作為一種組蛋白甲基轉(zhuǎn)移酶,與乳腺癌的發(fā)生有密切關(guān)系。宮內(nèi)暴露于DES的小鼠其成年后乳腺組織EZH2表達(dá)和蛋白水平與對(duì)照組相比增加兩倍以上。相似地,宮內(nèi)暴露于DES的小鼠其乳腺組蛋白H3的三甲基化增加。推測(cè)發(fā)育過(guò)程中EZH2的編程可能是宮內(nèi)暴露于內(nèi)分泌干擾劑如DES導(dǎo)致其乳腺組織表觀遺傳修飾改變的機(jī)制[25]。另外,DNA聚合酶聯(lián)合DNA復(fù)制、miRNA和組蛋白甲基化可能在組蛋白甲基化表觀繼承中起重要作用,推測(cè)其原因是在DNA復(fù)制叉中,DNA聚合酶亞基對(duì)表觀遺傳因子聚集的調(diào)節(jié)需要miRNA和性染色體的組蛋白修飾來(lái)保證組蛋白甲基化忠實(shí)傳代[26]。
母系吸煙是其胎兒生長(zhǎng)受限和肺功能低下的一個(gè)重要危險(xiǎn)因素并且這可能是由環(huán)境的表觀遺傳學(xué)調(diào)節(jié)的[4]。研究表明,母系吸煙和胎兒宮內(nèi)暴露于煙草可明顯影響胎兒出生后全基因組DNA甲基化,尤其是AluYb8(一種短的散在的DNA重復(fù)序列)甲基化[27]。母系吸煙同樣也影響胰島素樣生長(zhǎng)因子2(Insulinlike Growth Factor 2,IGF2),IGF2對(duì)胎兒生長(zhǎng)調(diào)節(jié)至關(guān)重要。孕期被動(dòng)吸煙可引起IGF2啟動(dòng)子P2甲基化改變[28]。另外,父系開始吸煙的年齡與其子代體重指數(shù)有關(guān),年齡越小,體重指數(shù)越大[29]。父系飲酒與其子代低出生體重有關(guān)[30],而低出生體重的嬰兒其成年后肥胖、T2DM、高血壓和CVD的危險(xiǎn)性顯著高于出生體重正常者。母系飲酒其胎兒易患酒精閾紊亂,推測(cè)其機(jī)制可能是酒精對(duì)DNA甲基化過(guò)程的影響,酒精可減少 DNMT3B mRNA的表達(dá)并增加基因組DNA甲基化[31]。最近研究表明孕期暴露于乙醇的大鼠,其后代反應(yīng)元件結(jié)合蛋白(cAMPResponse Element Binding Protein,CBP)表達(dá)水平下降,CBP是一種組蛋白乙酰轉(zhuǎn)移酶,有調(diào)控神經(jīng)細(xì)胞基因表達(dá)的功能,對(duì)乙醇暴露的大鼠其后代小腦組蛋白H3和H4乙酰化水平下降[32]。以上這些研究表明,環(huán)境中的化合物可引起表觀遺傳修飾改變并且某些情況下這些改變能夠傳遞到后代并改變其疾病易感性。
2.2 親代的營(yíng)養(yǎng)狀況
對(duì)二戰(zhàn)期間從“荷蘭饑荒冬”中存活下來(lái)的妊娠期女性的流行病學(xué)研究發(fā)現(xiàn),其后代糖代謝有明顯改變并且成年后患高血壓、冠心病和中風(fēng)的危險(xiǎn)性也明顯改變,推測(cè)其原因是IGF2基因甲基化發(fā)生了改變[33]。采用動(dòng)物模型研究孕期低蛋白飲食大鼠試驗(yàn)表明,胎兒宮內(nèi)營(yíng)養(yǎng)環(huán)境在其成年后對(duì)疾病的易感性中起重要作用[34]。試驗(yàn)選擇妊娠期和哺乳期大鼠,試驗(yàn)組飼料中的蛋白質(zhì)質(zhì)量濃度為80 g/kg,而對(duì)照組為200 g/kg;子代大鼠均喂以高脂飼料,結(jié)果發(fā)現(xiàn)試驗(yàn)組的子代大鼠出現(xiàn)肥胖且患IR、T2DM和高血壓的風(fēng)險(xiǎn)增大。孕期大鼠營(yíng)養(yǎng)不良或過(guò)剩,其后代在成長(zhǎng)過(guò)程中易發(fā)生肥胖和T2DM[35]。孕期肥胖大鼠其后代體重、脂肪組織形成和血糖平衡均受到不同程度的影響[36-38]。盡管針對(duì)遺傳學(xué)基因組研究已經(jīng)證實(shí),機(jī)體細(xì)胞內(nèi)確有能導(dǎo)致個(gè)體間疾病易感性不同的基因,但由于基因組結(jié)構(gòu)的穩(wěn)定性,大多數(shù)環(huán)境因素并不能引起基因突變或 DNA序列改變[14,39]。最新研究推測(cè)機(jī)體發(fā)育過(guò)程中引起功能基因組異常或機(jī)體對(duì)某些疾病易感性改變這一長(zhǎng)時(shí)程變化,可能是由表觀遺傳修飾改變所介導(dǎo)的基因表達(dá)變化所致[40-42]。
早期有關(guān)環(huán)境因素跨代影響的研究主要是針對(duì)孕母(F0)所處環(huán)境對(duì)其后代表型及疾病易感性的影響。但是,越來(lái)越多的證據(jù)表明父系(F0)所處環(huán)境在其后代肥胖和代謝編碼過(guò)程中有重要的生物學(xué)作用[43,44]。流行病學(xué)和動(dòng)物模型研究表明,父系的營(yíng)養(yǎng)狀況與其后代發(fā)育異常有關(guān)[45]。
大量流行病學(xué)研究表明男性的營(yíng)養(yǎng)狀況可對(duì)其后代的疾病易感性產(chǎn)生跨代影響尤其是對(duì)代謝性疾病的影響。男性(F0)青春期前生長(zhǎng)發(fā)育遲緩階段(8~ 12歲)的營(yíng)養(yǎng)狀況與F2代患T2DM和CVD的危險(xiǎn)性和死亡率有關(guān)[29,46]。動(dòng)物模型研究也表明,出生前營(yíng)養(yǎng)不良的雄性小鼠 (通過(guò)限制其母親妊娠晚期能量攝入來(lái)實(shí)現(xiàn)),生后給予正常喂養(yǎng)的后代與正常喂養(yǎng)對(duì)照組的后代相比,出生體重減小和糖耐量受損[47]。Anderson等的研究發(fā)現(xiàn)雄性小鼠交配前禁食24小時(shí)其后代血清葡萄糖水平下降,并且,這一改變?cè)谕CF1小鼠間表現(xiàn)并無(wú)性別差異[48]。Dunn等的研究發(fā)現(xiàn),孕前持續(xù)6周給予高脂飼料的C57BL/6雌性小鼠(F0)其后代(F1和F2)與對(duì)照組的后代相比,體型增大,胰島素敏感性下降[49]。然而,因?yàn)镕1的胚胎和Germ cells及F2的Germ cells可能會(huì)受到F0孕期暴露的影響,因此為了確定這種穩(wěn)定的表觀遺傳繼承是否發(fā)生,他們又檢測(cè)了F3代小鼠的體型大小及胰島素敏感性,結(jié)果發(fā)現(xiàn)只有雌性小鼠表現(xiàn)出體型增大并且是通過(guò)父系的Lineages來(lái)傳遞的。這種通過(guò)父系影響F3雌性小鼠表型的現(xiàn)象支持了一種以Germ cells為基礎(chǔ)的跨代繼承模型[50]。Ng等以高脂飼料喂養(yǎng)雄性大鼠(F0)的研究發(fā)現(xiàn)其雌性后代(F1)較正常飲食對(duì)照大鼠的后代更易發(fā)生肥胖和IR,其原因是高脂飲食改變了雌性后代(F1)大鼠胰島β細(xì)胞DNA甲基化修飾,導(dǎo)致β細(xì)胞基因組異常表達(dá)所致[51]。Carone等以低蛋白飼料喂養(yǎng)雄性C57BL/6小鼠(F0)的研究發(fā)現(xiàn)其后代(F1)與正常飼料喂養(yǎng)的雄性鼠后代相比,肝臟中與脂質(zhì)和膽固醇生物合成相關(guān)的基因表達(dá)增強(qiáng),膽固醇酯的含量下降。進(jìn)一步的表觀遺傳學(xué)研究發(fā)現(xiàn)這些F1小鼠肝細(xì)胞表觀基因組約20%的胞嘧啶甲基化在父系飲食影響下發(fā)生了變化,其中最為顯著的是其肝臟過(guò)氧化物酶體增殖物激活受體α(Peroxisome Proliferator activated Receptor,PPARα)基因增強(qiáng)子附近出現(xiàn)了可重復(fù)的胞嘧啶甲基化修飾改變,并且這一改變?cè)谕CF1小鼠間的表現(xiàn)并無(wú)性別差異[52],提示父系飲食因素可影響其后代對(duì)疾病的易感性,同時(shí)為揭示父系飲食習(xí)慣可能通過(guò)改變自身表觀遺傳修飾而影響其后代表型提供了寶貴的線索。
長(zhǎng)期規(guī)律的有氧運(yùn)動(dòng)可加快機(jī)體能量代謝,改善機(jī)體糖、脂代謝紊亂,在代謝性疾病的防治過(guò)程中有重要作用。然而,有氧運(yùn)動(dòng)是否可通過(guò)改變親代表觀遺傳修飾而影響其后代(F1)的疾病易感性,相關(guān)研究尚不多見。
隨著對(duì)表觀遺傳研究的進(jìn)一步深入,最近研究發(fā)現(xiàn)運(yùn)動(dòng)也有產(chǎn)生表觀遺傳修飾的能力。長(zhǎng)期規(guī)律的有氧運(yùn)動(dòng)可通過(guò)增加大鼠海馬組蛋白乙?;福℉istone Acetyltransferases,HAT)活性和降低組蛋白去乙?;福℉istone Deacetylases,HDAC)活性誘導(dǎo)組蛋白乙?;?3]。Gomez-Pinilla等的研究表明,自主運(yùn)動(dòng)可通過(guò)表觀遺傳修飾增加腦源性神經(jīng)營(yíng)養(yǎng)因子(Brain-derived Neurotrophic Factor,BDNF)的水平,其原因是運(yùn)動(dòng)影響B(tài)DNF基因啟動(dòng)子Ⅳ區(qū)域組蛋白H3乙酰化和DNA甲基化[54]。最近研究發(fā)現(xiàn),有氧運(yùn)動(dòng)可導(dǎo)致小鼠骨骼肌基因表達(dá)譜發(fā)生改變,其中40個(gè)基因與運(yùn)動(dòng)改善高脂飲食誘導(dǎo)的IR有關(guān)[55],但這些基因表達(dá)的變化是否通過(guò)表觀遺傳DNA甲基化修飾改變所致尚需進(jìn)一步實(shí)驗(yàn)研究證實(shí)。另外,急性運(yùn)動(dòng)后人體骨骼肌組蛋白乙?;黠@增強(qiáng)[56]。游泳訓(xùn)練可增加葡萄糖轉(zhuǎn)運(yùn)體4(Glucose Transporter 4,GLUT4)基因與心肌細(xì)胞增強(qiáng)因子2結(jié)合部位的組蛋白 H3的乙?;剑?7],表明運(yùn)動(dòng)可引起表觀遺傳修飾改變。運(yùn)動(dòng)干預(yù)影響表觀遺傳修飾的機(jī)制研究尚處于起步階段,由于表觀遺傳修飾主要表現(xiàn)為DNA甲基化、組蛋白修飾、染色質(zhì)重塑和ncRNA調(diào)控等,它們之間的調(diào)控關(guān)系較為復(fù)雜,其如何共同協(xié)調(diào)影響組織細(xì)胞染色體結(jié)構(gòu)的機(jī)制尚未明確。揭示運(yùn)動(dòng)干預(yù)影響組織細(xì)胞表觀遺傳學(xué)修飾機(jī)制將為研究有氧運(yùn)動(dòng)增強(qiáng)機(jī)體自身健康以及影響后代的表觀遺傳修飾、增強(qiáng)后代對(duì)疾病易感性提供理論依據(jù)。
綜上所述,在動(dòng)物模型研究中,環(huán)境因素誘導(dǎo)的表觀遺傳修飾有跨代繼承現(xiàn)象[58]。但是,只有當(dāng)環(huán)境影響因素作用于分化時(shí)期的Germ line影響表觀遺傳編程時(shí),才表現(xiàn)出跨代繼承的現(xiàn)象[56]。在肥胖和T2DM等代謝異常的人或動(dòng)物組織細(xì)胞中廣泛存在著由DNA甲基化修飾改變引起的基因表達(dá)變化[59,60],但對(duì)于環(huán)境因素是否干擾Germ line甲基化修飾并通過(guò)表觀遺傳繼承方式對(duì)其后代疾病易感性產(chǎn)生影響,以及有氧運(yùn)動(dòng)是否能夠改變Germ line的表觀遺傳修飾而影響其后代對(duì)疾病易感性尚不明確,其機(jī)制的研究已引起了國(guó)內(nèi)外學(xué)者的廣泛關(guān)注。深入了解并進(jìn)一步探討其機(jī)制以尋求有效的干預(yù)措施,對(duì)于控制兒童肥胖和T2DM等代謝相關(guān)疾病的發(fā)生發(fā)展意義重大。
[1]Rosenbloom AL,Silverstein JH,Amemiya S,et al.Type 2 diabetes in the child and adolescent.Pediatric Diabetes,2009,10(12):S17-S32.
[2]Lillycrop KA.Symposium 1:Nutrition and epigenetics----Effect of maternal diet on the epigenome:implications for human metabolic disease.Proceedings of the Nutrition Society,2011,70(1):64-72.
[3]Skinner MK.Role of epigenetics in developmental biology and transgenerational inheritance.Birth Defects Research(Part C),2011,93(1):51-55.
[4]Hussain N.Epigenetic influences that modulate infant growth,development and disease.Antioxid Redox Signal,2012,17(2):224-236.
[5]程學(xué)美,單寶德,張?zhí)炝?環(huán)境與表觀遺傳學(xué).職業(yè)與健康,2010,26(18):2136-2138.
[6]Klose RJ,Bird AP.Genomic DNA methylation:The mark and itsmediators.Trends Biochem Sci,2006,31(2):89-97.
[7]Jenuwein T,Allis CD.Translating the histone code.Science,2001,293(5532):1074-1080.
[8]Calle A,F(xiàn)ernandez-Gonzalez R,Ramos-Ibeas P,et al.Long-term and transgenerational effects of in vitro culture onmouse embryos.Theriogenology,2012,77(4):785-793.
[9]Ho E,Beaver LM,Williams DE,et al.Dietary factors and epigenetic regulation for prostate cancer prevention.Adv Nutr,2011,2(6):497-510.
[10]Vickaryous N,Whitelaw E.The role of early embryonic environment on epigenotype and phenotype.Reprod Fertil Dev,2005,17(3):335-340.
[11]Guerrero-Bosagna C,Skinner MK.Environmentally induced epigenetic transgenerational inheritance of phenotype and disease.Mol Cell Endocrinol,2012,354(1-2):3-8.
[12] Fernandez-Ruiz J,Gomez M,Hernandez M,et al.Cannabinoids and gene expression during brain development.Neurotox Res,2004,6(5):389-401.
[13]Oberlander TF,Weinberg J,Papsdorf M,etal.Prenatal exposure tomaternal depression,neonatalmethylation of human glucocorticoid receptor gene(NR3C1)and infant cortisol stress responses.Epigenetics,2008,3(2):97-106.
[14]Jirtle RL,SkinnerMK.Environmentalepigenomics and diseasesusceptibility.NatRevGenet,2007,8(4):253-262.
[15]Skinner MK.Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability.Epigenetics,2011,6(7):838-842.
[16]Zama AM,Uzumcu M.Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.Endocrinology,2009,150(10):4681-4691.
[17] Guerrero-Bosagna C,Settles M,Lucker B,et al.Epigenetic transgenerational actions of vinclozolin on pro-moter regions of the sperm epigenome.PLoS One,2010,5(9):e13100.
[18]Skinner MK,Manikkam M,Guerrero-Bosagna C.Epigenetic transgenerational actions of endocrine disruptors.Reprod Toxico,2011,31(3):337-343.
[19]Vilela ML,Willingham E,Buckley J,et al.Endocrine disruptors and hypospadias:Role of genistein and the fungicide vinclozolin.Urology,2007,70(3):618-621.
[20]Anway MD,Cupp AS,Uzumcu M,et al.Epigenetic transgenerational actions of endocrine disruptorsand male fertility.Science,2005,308(5727):1466-1469.
[21]Anway MD,Leathers C,Skinner MK.Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease.Endocrinology,2006,147(12):5515-5523.
[22]Anway MD,Memon MA,Uzumcu M,et al.Transgenerational effect of the endocrine disruptor vinclozolin onmale spermatogenesis.JAndrol,2006,27(6):868-879.
[23]Anway MD,Skinner MK.Epigenetic transgenerational actions of endocrine disruptors.Endocrinology,2006,147(6):S43-S49.
[24]Chang HS,Anway MD,Rekow SS,et al.Transgenerational epigenetic imprinting of the male germ line by endocrine disruptor exposure during gonadal sex determination.Endocrinology,2006,147(12):5524-5541.
[25]Doherty LF,Bromer JG,Zhou Y,et al.In utero exposure to diethylstilbestrol(DES)or bisphenol-A(BPA)increases EZH2 expression in the mammary gland:An epigenetic mechanism linking endocrine disruptors to breast cancer.Horm Cancer,2010,1(3):146-155.
[26]Gonzalez M,Li F.DNA replication,RNAi and epigenetic inheritance.Epigenetics,2012,7(1):14-19.
[27]Breton CV,Byun HM,Wenten M,et al.Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation.Am JRespir Crit Care Med,2009,180(5):462-467.
[28]Ba Y,Yu H,Liu F,et al.Relationship of folate,vitamin B12 and methylation of insulin-like growth factor-II inmaternal and cord blood.Eur J Clin Nutr,2011,65(4):480-485.
[29]Pembrey ME,Bygren LO,Kaati G,et al.Sex-specific,male-line transgenerational responses in humans.Eur J Hum Genet,2006,14(2):159-166.
[30]Little RE.Mother’s and father’s birthweight as predictors of infant birthweight.Paediatr Perinat Epidemiol,1987,1(1):19-31.
[31]Bonsch D,LenzB,F(xiàn)iszerR,etal.Lowered DNAmethyltransferase(DNMT-3b)mRNA expression isassociated with genomic DNA hypermethylation in patientswith chronic alcoholism.JNeuralTransm,2006,113(9):1299-1304.
[32]Guo W,Crossey EL,Zhang L,et al.Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum.PLoS One,2011,6(5):e19351.
[33]Heijmans BT,Tobi EW,Stein AD,et al.Persistent epigenetic differences associated with prenatal exposure to famine in humans.Proc Natl cad Sci USA,2008,105(44):17046-17049.
[34]Stocker CJ,Arch JR,Cawthorne MA,et al.Fetal origins of insulin resistance and obesity.Proc Nutr Soc,2005,64(2):143-151.
[35]Guo F,Jen K-L.High-fat feeding during pregnancy and lactation affects offspring metabolism in rats.Physiol Behav,1995,57(4):681-686.
[36] McMillen IC,Robinson JS.Developmental origins of the metabolic syndrome:prediction,plasticity,and programming.Physiol Rev,2005,85(2):571-633.
[37]Plagemann A.Perinatal programming and functional teratogenesis:impact on body weight regulation and obesity.Physiol Behav,2005,86(5):661-668.
[38]Bouret SG.Early life origins of obesity:role of hypothalamic programming.J Pediatr Gastroenterol Nutr,2009,1(48):S31-S38.
[39]Szyf M.The dynamic epigenome and its implications in toxicology.Toxicol Science,2007,100(1):7-23.
[40]Hanson MA,Gluckman PD.Developmental origins of health and disease:new insights.Basic Clin Pharmacol Toxicol,2008,102(2):90-93.
[41]Morgan DK,Whitelaw E.The role of epigenetics in mediating environmental effects on phenotype.Nestle Nutr Workshop Ser Pediatr Program,2009,63:109-117.
[42]Waterland RA.Is epigenetics an important link between early life events and adult disease?Horm Res,2009,71(1):S13-S16.
[43]Tarquini B,TarquiniR,Perfetto F,et al.Genetic and environmental influences on human cord blood leptin concentration.Pediatrics,1999,103(5 pt1):998-1006.
[44]Power C,Li L,Manor O,et al.Combination of low birth weight and high adult body mass index:at what age is it established and what are its determinants?J Epidemiol Community Health,2003,57(12):969-973.
[45]Curley JP,Mashoodh R,Champagne FA.Epigenetics and the origins of paternal effects.Hormones and Behavior,2011,59(3):306-314.
[46]Kaati G,Bygren LO,Pembrey M,et al.Transgenerational response to nutrition,early life circumstances and longevity.Eur JHum Genet,2007,15(7):784-790.
[47]Jimenez-Chillaron JC,Isganaitis E,Charalambous M,et al.Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice.Diabetes,2009,58(2):460-468.
[48]Anderson LM,Riffle L,Wilson R,et al.Preconceptional fasting of fathers alters serum glucose in offspring ofmice.Nutrition,2006,22(3):327-331.
[49]Dunn GA,Bale TL.Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generationmice.Endocrinology,2009,150(11):4999-5009.
[50]Dunn GA,Bale TL.Maternal high-fat diet effects on third-generation female body size via the paternal lineage.Endocrinology,2011,152(6):2228-2236.
[51]Ng SF,Lin RCY,Laybutt DR,et al.Chronic high-fat diet in fathers programsβ-cell dysfunction in female rat offspring.Nature,2010,467(7318):963-966.
[52]Carone BR,F(xiàn)auquier L,Habib N,et al.Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.Cell,2010,143(7):1084-1096.
[53]Elsner VR,Lovatel GA,Bertoldi K,et al.Effectof different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus.Neuroscience,2011,192:580-587.
[54]Gomez-Pinilla F,Zhuang Y,F(xiàn)eng J,et al.Exercise impacts brain-derived neurotrophic factor plasticitybyengagingmechanismsofepigeneticregulation.Eur J Neurosci,2011,33(3):383-390.
[55]Fu L,Liu X,Niu Y,et al.Effects of high-fat diet and regular aerobic exercise on global gene expression in skeletal muscleofC57BL/6mice.Metabolism,2012,61(2):146-152.
[56]McGee SL,F(xiàn)airlie E,Garnham AP,et al.Exercise induced histonemodifications in human skeletalmuscle.JPhysiol,2009,587(Pt 24):5951-5958.
[57]Smith JA,Collins M,Grobler LA,et al.Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo.Am J Physiol EndocrinolMetab,2008,292(2):E413-E420.
[58]Bollati V,Baccarelli A.Environmental epigenetics.Heredity,2010,105(1):105-112.
[59]Ling C,Poulsen P,Simonsson S,et al.Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle.J Clin Invest,2007,117(11):3427-3435.
[60]Ronn T,Poulsen P,Hansson O,et al.Age influences DNA methylation and gene expression of COX7A1 in human skeletalmuscle.Diabetologia,2008,51(7):1159-1168.
2012.04.24
國(guó)家自然科學(xué)基金(31100856)
傅力,Email:lifu@tijmu.edu.cn,Tel:022-23542063