邵 勇,陸 彬,陳 軍,郭平義
(1.上海交通大學(xué)模具CAD國家工程研究中心,上海200030; 2.江蘇科技大學(xué)先進焊接技術(shù)省重點實驗室,江蘇鎮(zhèn)江212003)
基于雙向漸進結(jié)構(gòu)優(yōu)化的葉片鍛件預(yù)成形設(shè)計
邵 勇1,2,陸 彬1,陳 軍1,郭平義2
(1.上海交通大學(xué)模具CAD國家工程研究中心,上海200030; 2.江蘇科技大學(xué)先進焊接技術(shù)省重點實驗室,江蘇鎮(zhèn)江212003)
為了實現(xiàn)體積成形的預(yù)成形優(yōu)化設(shè)計,基于雙向漸進結(jié)構(gòu)(BESO)優(yōu)化的思想,提出了一種針對體積成形預(yù)成形設(shè)計的新方法——拓?fù)鋬?yōu)化法,并詳細(xì)給出了該方法的優(yōu)化策略、單元增刪準(zhǔn)則、插值處理等關(guān)鍵技術(shù).利用自行開發(fā)的優(yōu)化程序,結(jié)合DEFORM-2D有限元模擬軟件,以理想充填模腔、最小飛邊狀態(tài)為目標(biāo),以靜水壓力的大小作為單元的增刪準(zhǔn)則,從毛坯的欠填充狀態(tài)出發(fā),對二維葉片鍛件的預(yù)成形結(jié)構(gòu)進行了優(yōu)化設(shè)計.優(yōu)化結(jié)果表明:該方法算法原理清晰明確,實現(xiàn)方便,整個過程集成化后,從模擬到優(yōu)化均可實現(xiàn)自動進行,運行效率高,并具有較高的優(yōu)化精度.
葉片;體積成形;預(yù)成形設(shè)計;漸進優(yōu)化;拓?fù)鋬?yōu)化
對于結(jié)構(gòu)復(fù)雜類鍛件成形,通常需要多道次變形工步,使毛坯逐漸接近最終鍛件形狀而成形.預(yù)成形工序作為制坯與終鍛的過渡,其作用十分關(guān)鍵,特別是對于精密鍛造技術(shù),合理的預(yù)成形結(jié)構(gòu)更是鍛件成形質(zhì)量的保證.因此,深入研究預(yù)成形設(shè)計及優(yōu)化方法,具有重要的現(xiàn)實意義.近年來,隨著計算機軟硬件的迅速發(fā)展和金屬塑性成形理論的成熟,基于數(shù)值模擬的金屬體積成形預(yù)成形設(shè)計成為了本領(lǐng)域的研究熱點,相關(guān)的研究成果十分豐富.GAO[1-2]等基于剛粘塑性有限元模擬,采用正反向模擬方法對復(fù)雜三維精鍛葉片葉身截面進行了預(yù)成形設(shè)計.但由于尚無通用可靠的脫模準(zhǔn)則以及在初始速度場求解方面的困難,因而在一定程度上影響了反向模擬的設(shè)計精度和設(shè)計效率.基于電場模擬法的復(fù)雜鍛件預(yù)成形設(shè)計近期也取得了顯著進展[3-4],但該方法存在初始毛坯確定以及過多人工處理的問題需要解決.基于梯度計算的靈敏度方法是較熱門的優(yōu)化設(shè)計方法,Zhao[5]等利用離散的靈敏度分析技術(shù),建立以控制變形力和變形均勻性的多目標(biāo)函數(shù),對預(yù)成形鍛件進行了優(yōu)化設(shè)計;而基于連續(xù)靈敏度分析技術(shù),Acharjee[6]已在簡單的三維鍛件預(yù)成形優(yōu)化設(shè)計方面做了有益嘗試,但靈敏度方程的建立涉及到復(fù)雜的數(shù)學(xué)推導(dǎo),也不是任意的目標(biāo)函數(shù)都能夠與設(shè)計變量建立起靈敏度關(guān)系,對于復(fù)雜的設(shè)計模型往往容易陷入局部尋優(yōu).
為了避免靈敏度信息的繁瑣推導(dǎo),簡化優(yōu)化問題的實施,一些采用非梯度信息的優(yōu)化算法得以迅速發(fā)展起來,遺傳算法就是其中之一.Guan[7]等利用群體規(guī)模較小的微觀遺傳算法,以均勻小晶粒組織為優(yōu)化目標(biāo),建立了熱加工過程中動態(tài)再結(jié)晶、靜態(tài)再結(jié)晶、晶粒長大等機制與晶粒尺度的數(shù)學(xué)表達式,并對H形鍛件的預(yù)成形模具進行了優(yōu)化設(shè)計.鄒琳[8]采用多種群并行遺傳算法,以人工神經(jīng)網(wǎng)絡(luò)代替數(shù)值模擬預(yù)測遺傳算法的目標(biāo)函數(shù)值,對擠壓模具的幾何參數(shù)進行了優(yōu)化設(shè)計,但神經(jīng)網(wǎng)絡(luò)的模型仍需要較多的有限元模擬來為其提供訓(xùn)練樣本,如何提高遺傳算法的優(yōu)化效率仍是值得研究的課題.相對于靈敏度法在設(shè)計操作上比較復(fù)雜,而遺傳算法效率又不高的問題,一種以試驗設(shè)計為基礎(chǔ),與數(shù)理統(tǒng)計相結(jié)合,用來處理多變量問題的近似建模方法——響應(yīng)面法,被應(yīng)用于預(yù)成形優(yōu)化設(shè)計.目前,較常用的構(gòu)建響應(yīng)面模型主要有多項式[9]和神經(jīng)網(wǎng)絡(luò)[10]兩類:多項式模型的響應(yīng)面設(shè)計變量數(shù)量不易過多,因而所能處理的幾何形狀復(fù)雜程度有限;而神經(jīng)網(wǎng)絡(luò)的響應(yīng)面方法雖然可以處理的設(shè)計變量數(shù)量有所增多,預(yù)成形形狀更加靈活,優(yōu)化精度也有所提高,但仍然需要足夠的樣本數(shù)據(jù)訓(xùn)練神經(jīng)網(wǎng)絡(luò),代價同樣是較多的有限元模擬次數(shù).
最近,一種基于拓?fù)鋬?yōu)化的方法——漸進結(jié)構(gòu)優(yōu)化方法(Evolutionary Structural Optimization,簡稱ESO)被報道應(yīng)用于金屬塑性預(yù)成形優(yōu)化設(shè)計領(lǐng)域[11].ESO法最初是由Xie等學(xué)者提出[12],其主要思想是基于一定的刪除準(zhǔn)則,通過有限元數(shù)值模擬的結(jié)果,逐步將無效或者低效的材料(單元)從模型中刪除,使結(jié)構(gòu)最終趨于符合一定工程要求的優(yōu)化結(jié)構(gòu).在隨后發(fā)展的BESO[13]方法里,材料不但能夠被刪除,還可以被添加到所需要的部位.Lu[14]等首次使用ESO法從坯料的過填充狀態(tài)出發(fā),對二維葉片葉身截面的預(yù)成形結(jié)構(gòu)進行了優(yōu)化設(shè)計,取得了理想的優(yōu)化效果,但優(yōu)化過程并沒有考慮初始坯料在欠填充狀態(tài)下的優(yōu)化效果.本文借鑒了BESO拓?fù)浣Y(jié)構(gòu)優(yōu)化的思想,利用C#語言建立了拓?fù)鋬?yōu)化程序,結(jié)合DEFORM-2D有限元模擬軟件,以理想充填模腔、最小飛邊狀態(tài)為目標(biāo),靜水壓力的大小作為單元的增刪準(zhǔn)則,從毛坯的欠填充狀態(tài)出發(fā),對二維葉片鍛件的預(yù)成形結(jié)構(gòu)進行了優(yōu)化設(shè)計,并與已有文獻的優(yōu)化結(jié)果進行了比較.
預(yù)成形優(yōu)化的首要目標(biāo)是在保證毛坯完全充滿型腔的前提下,鍛件飛邊盡可能小,因此,目標(biāo)函數(shù)可以用式(1)表示.SD為理想的終鍛件體積,屬于已知條件輸入;Si為第i次迭代成形模擬后,計算出來的鍛件實際體積(包括飛邊);rmin、rmax為目標(biāo)函數(shù)值Ψ收斂范圍的邊界值,由設(shè)計者按飛邊大小相對鍛件比率合理設(shè)定,應(yīng)為較小正數(shù).迭代過程中,當(dāng)滿足rmin≤Ψ≤rmax,程序優(yōu)化結(jié)束.本程序充分考慮了初始預(yù)成形體積大于或小于理論終鍛件體積的不同情況.程序通過判斷Si與SD的大小關(guān)系,自動調(diào)整參數(shù),靈活定制迭代過程中增刪單元的數(shù)量比率,以達到合理的優(yōu)化結(jié)果,具體的處理方法見單元增刪準(zhǔn)則部分.另外,為了防止程序因無法收斂而進入無限循環(huán)狀態(tài),需設(shè)置一個最大迭代次數(shù)
金屬體積預(yù)成形優(yōu)化與結(jié)構(gòu)拓?fù)鋬?yōu)化的特點并不相同,其主要區(qū)別可歸結(jié)在以下幾個方面:①結(jié)構(gòu)優(yōu)化可以在連續(xù)體表面以及內(nèi)部同時增刪單元;而體積預(yù)成形優(yōu)化只能在連續(xù)體表面增刪單元.②在垂直于外載荷方向上,為避免出現(xiàn)折疊,體積預(yù)成形優(yōu)化后的外形結(jié)構(gòu)要保證外凸性;而結(jié)構(gòu)拓?fù)鋬?yōu)化則無此要求.③優(yōu)化目標(biāo)的不同,導(dǎo)致單元增刪準(zhǔn)則的本質(zhì)不同.如:結(jié)構(gòu)拓?fù)鋬?yōu)化中通常以Von Mises等效應(yīng)力作為單元刪除準(zhǔn)則,但等效應(yīng)力并不能區(qū)分變形體的拉、壓應(yīng)力狀態(tài),不利于判斷材料變形狀態(tài)與趨勢.在金屬充填模腔的過程中,壓應(yīng)力較高通常意味著材料流動困難,往往出現(xiàn)在局部模腔較早即被充滿的情況下,該區(qū)域就應(yīng)考慮刪除單元;若壓應(yīng)力較低或出現(xiàn)拉應(yīng)力狀態(tài)則意味著模腔欠填充,對應(yīng)著增加單元.因此,以等效應(yīng)力為單元刪除準(zhǔn)則就不適用于鍛造預(yù)成形的優(yōu)化過程.
單元的增刪判據(jù)要能夠反映材料充填模腔的情況,本文采用靜水壓力(平均應(yīng)力)作為單元的增刪判據(jù).對于二維平面應(yīng)變問題,已知一點的應(yīng)力狀態(tài)分量有σx、σy、σz、σxy,靜水壓力計算方法見式(2).如果〉0,則該單元總體處于拉應(yīng)力狀態(tài);而m<0,則該單元總體處于壓應(yīng)力狀態(tài).由于能夠真實反映單元個體的應(yīng)力狀態(tài),參照先前提到過的應(yīng)力狀態(tài)與單元增刪的內(nèi)在關(guān)系,利用靜水壓力作為單元增刪準(zhǔn)則是合理的.
金屬體積預(yù)成形的優(yōu)化,內(nèi)部不允許出現(xiàn)孔洞,因此,每次迭代過程中,約束只有實體表面單元可以參與增刪操作.在實際的程序處理中,單元并不是真正意義的被增加和刪除,而是通過激活與非激活來實現(xiàn)單元的增減,非激活狀態(tài)的單元無法對預(yù)成形外形產(chǎn)生影響,也不參與有限元數(shù)值計算.預(yù)成形體積要不斷增加,因此,每次迭代增加單元的數(shù)量要大于刪除單元的數(shù)量.在程序中非激活單元的數(shù)量(Ne)約為表面單元總數(shù)的20%;而激活單元的基礎(chǔ)數(shù)量(Ni)由式(3)決定.
式中:W1為加速因子,合理設(shè)置可滿足不同尺度優(yōu)化問題靈活調(diào)整增刪單元數(shù)量比的要求.優(yōu)化初始,Si遠小于SD,激活單元的數(shù)量較多,可快速增加預(yù)成形體積;隨著Si接近SD,激活單元數(shù)量也隨之下降,預(yù)成形體積增加放緩,可較好地實現(xiàn)慢速收斂.
對于體積預(yù)成形的優(yōu)化,只有實體表面單元可以參與激活與否的操作,作為約束條件,激活單元與非激活單元的總和不應(yīng)超過表面單元的總數(shù)量(NS),其關(guān)系見式(4).W2作為比重因子,取值范圍為0<W2<1,可合理設(shè)置以控制參與優(yōu)化的單元規(guī)模.
整個優(yōu)化策略參考圖1.首先,基于優(yōu)化體外形尺寸的大小,確定總體的優(yōu)化空間并對其進行網(wǎng)格(均布正方形)劃分,創(chuàng)建一個背景網(wǎng)格,背景網(wǎng)格應(yīng)有足夠的空間以滿足隨后所有的預(yù)成形優(yōu)化的形狀尺度要求.背景網(wǎng)格空間上的所有單元處于兩種狀態(tài):激活狀態(tài)或非激活狀態(tài).所有處于激活狀態(tài)的單元構(gòu)成了預(yù)成形結(jié)構(gòu).優(yōu)化程序運行前,需要根據(jù)經(jīng)驗確定一個初始預(yù)成形形狀作為優(yōu)化原型,并對該原型進行有限元成形模擬.原型模擬以及隨后每次迭代過程中的成形模擬結(jié)束后,程序都將首先自動分析、處理模擬結(jié)果并計算優(yōu)化目標(biāo)函數(shù)是否滿足預(yù)設(shè)條件,如滿足,則迭代終止,優(yōu)化進程結(jié)束,當(dāng)前預(yù)成形結(jié)構(gòu)作為最終優(yōu)化結(jié)果輸出;如不滿足,則執(zhí)行拓?fù)鋬?yōu)化程序:①單元場量跟蹤:獲取單元變形歷史,執(zhí)行數(shù)據(jù)跟蹤操作,使變形前后的單元一一對應(yīng),并將計算模擬結(jié)果中的靜水壓力值傳遞給初始背景網(wǎng)格上的激活單元.②拓?fù)洳僮?基于單元增刪準(zhǔn)則和約束條件判斷單元的增刪數(shù)量以及增刪位置,并執(zhí)行拓?fù)鋬?yōu)化操作,最終得到更新后的拓?fù)洵h(huán)境下的預(yù)成形形狀.③曲面輪廓近似:顯然,每次拓?fù)鋬?yōu)化后的外形邊界都是鋸齒狀,并不能直接用于有限元模擬分析,需要對外形進行光順化處理.④有限元模擬:將處理后的預(yù)成形幾何形狀引入有限元系統(tǒng)并重新劃分網(wǎng)格、進行下一次迭代成形的有限元模擬.重復(fù)上述操作,直至迭代過程結(jié)束,得到最終優(yōu)化后的預(yù)成形外形結(jié)構(gòu).
圖1 預(yù)成形結(jié)構(gòu)優(yōu)化設(shè)計策略
每次迭代優(yōu)化后的結(jié)果使得背景網(wǎng)格上實體表面單元的激活狀態(tài)不斷發(fā)生變化,導(dǎo)致整個優(yōu)化體邊緣呈現(xiàn)鋸齒狀(圖2(a)),如果直接用其進行成形模擬分析將影響模擬的精度并有可能導(dǎo)致計算錯誤,因此,在每次迭代模擬成形過程以前,需自動對拓?fù)鋬?yōu)化后的預(yù)成形外表面進行邊界光順處理.具體處理方法是:通過合理提取背景網(wǎng)格上實體表面邊界上的節(jié)點,利用積累弦長參數(shù)化的非均勻B樣條曲線構(gòu)造方法,構(gòu)造出光滑的表面曲線.再將得到的曲線轉(zhuǎn)換成DEFORM-2D可識別的數(shù)據(jù)形式導(dǎo)入模擬程序中,并利用DEFORM-2D的自動網(wǎng)格生成程序重新劃分網(wǎng)格(圖2(b)),進而開始成形過程的有限元模擬.
圖2 背景網(wǎng)格邊界光順處理
在DEFORM模擬過程中,隨著變形程度的增大,坯料原始網(wǎng)格會發(fā)生畸變并有可能導(dǎo)致模擬中斷,此時程序會自動進行網(wǎng)格重劃分,導(dǎo)致網(wǎng)格重劃分前后單元編號無法對應(yīng).為了獲得單元場量(靜水壓力)的變形歷史,需要對網(wǎng)格重劃分前后進行插值處理,使最終模擬結(jié)果中對應(yīng)單元上的場量值能夠定位到每個初始背景網(wǎng)格上,并以此作為背景網(wǎng)格單元增刪操作的判據(jù).插值處理的方法如下.
1)如果沒有網(wǎng)格再劃分,成形模擬過程中的單元編號以及節(jié)點編號就不會發(fā)生變化,初始單元節(jié)點上的場量值就可以直接通過成形模擬后同編號節(jié)點上的場量值直接讀取;如果有網(wǎng)格再劃分,則不論經(jīng)過多少次網(wǎng)格重劃分的過程,網(wǎng)格節(jié)點上的場量值都是累積計算的.因此,只需依次利用網(wǎng)格重劃分前后的節(jié)點坐標(biāo)進行插值計算,就可以將最終模擬出來的場量結(jié)果逐次傳遞給初始網(wǎng)格各節(jié)點.插值方程見式(5).XQ為網(wǎng)格重劃分前待求節(jié)點位置上的場量值,Hi為網(wǎng)格重劃分后,包容待求節(jié)點的四邊形單元形函數(shù),XQi為形函數(shù)單元每個節(jié)點上的場量值.
2)得到有限元初始網(wǎng)格各節(jié)點的場量值后,再對背景網(wǎng)格上指定坐標(biāo)點相對于初始網(wǎng)格進行插值計算.背景網(wǎng)格是均勻分布的正方形單元,以每個單元中心點的靜水壓力值作為衡量該單元的總體靜水壓力指標(biāo),并以此作為單元增刪準(zhǔn)則的判據(jù).插值方法采用的是反距離加權(quán)插值,插值方程見式(6).為插值點上的靜水壓力,di為插值點與初始網(wǎng)格節(jié)點之間的距離為初始網(wǎng)格節(jié)點上的靜水壓力值.
通過上述的插值處理,模擬結(jié)果中的靜水壓力值就可以定位到每個背景網(wǎng)格上.
在每次拓?fù)鋬?yōu)化的迭代過程中,按照增刪判據(jù),先進行刪除單元操作,再進行增加單元操作.為了避免預(yù)成形的實體內(nèi)部出現(xiàn)空洞,在每次的迭代中,約束只有實體表面的單元能夠參與增刪操作,且限制已發(fā)生刪除操作的單元不再參與增加操作.另外,增刪單元時,為了避免出現(xiàn)折疊,特殊約束限制使得實體在垂直于加載方向上避免出現(xiàn)內(nèi)凹.
葉片材料為鎳基合金,最大外廓尺寸約為70 mm×34 mm×34 mm.鍛造過程模擬工件采用的是剛粘塑性有限元模型,模具為剛性體設(shè)置.葉片初始截面形狀為橢圓形,面積約為目標(biāo)鍛件截面積的78%,采用四邊形等參單元劃分網(wǎng)格.背景網(wǎng)格單元數(shù)15 296、節(jié)點數(shù)15 600.始鍛溫度1 010℃,模具溫度250℃,詳細(xì)的工件材料本構(gòu)關(guān)系數(shù)據(jù)如圖3所示.鍛造過程中的工件與模具傳熱系數(shù)為11 kW/m2·℃、摩擦因子μ=0.3.成形過程中,上模速度為200 mm/s,下模不動,有限元模型如圖4所示.
圖3 材料的流動應(yīng)力
圖4 有限元模型
圖5為預(yù)成形外形的進化過程以及靜水壓力分布的有限元模擬結(jié)果.隨著迭代的進行,預(yù)成形的幾何形狀由最初的橢圓形逐漸轉(zhuǎn)變?yōu)閱♀徯螤睿瑫r坯料體積逐漸增加,經(jīng)過10次優(yōu)化后,模腔已完全充滿,變形材料流動均勻,取得了理想的成形效果.從所有迭代優(yōu)化后的靜水壓力分布來看,鍛后截面中間部位均承受較大的三向壓應(yīng)力,并隨著毛坯體積的增加,壓應(yīng)力狀態(tài)也顯著增強.過大的三向壓應(yīng)力狀態(tài)將嚴(yán)重阻礙金屬變形,導(dǎo)致材料流動困難,表明此處模腔正處于過填充的狀態(tài),從優(yōu)化策略上對應(yīng)刪除單元;而隨著金屬向兩側(cè)飛邊方向的流動,靜水壓力值逐漸增大,直至料流邊緣達到最大值,并呈現(xiàn)出拉應(yīng)力狀態(tài),這表明金屬變形較容易,材料在模腔內(nèi)仍有繼續(xù)流動空間,從優(yōu)化策略上則對應(yīng)增加單元.
圖5 預(yù)成形進化過程及靜水壓力分布
盡管鍛后的靜水壓力分布云圖可以近似反映變形前預(yù)成形件表面不同部位所對應(yīng)的靜水壓力值的大小及分布,但為了更準(zhǔn)確地了解單元的具體增刪位置,圖6直接跟蹤了第十次優(yōu)化的預(yù)成形件表面上不同位置的3個節(jié)點的變形歷史以及對應(yīng)的靜水壓力值的變化情況.由于優(yōu)化后的預(yù)成形近似為中心對稱結(jié)構(gòu),因此,圖中僅對右半部分進行了分析.由材料流動軌跡上看(圖6(a)),P1點幾乎沒有位移、P2點有少量位移、P3點位移最大,這表明成形過程中,葉片截面兩側(cè)部分型腔主要由P2至P3部分的金屬流動填充,而中心部位變形很小.從靜水壓力值變化來看(圖6(b)),P3點在整個成形過程中,一直處于100 MPa左右的拉應(yīng)力狀態(tài),表明該區(qū)域金屬持續(xù)發(fā)生流動變形,參考單元的增刪判據(jù),此處在迭代過程中將不斷增加單元.在成形階段中前期,由于截面中心部位有足夠的自由空間,P1至P2之間的變形區(qū)域無法形成三向壓應(yīng)力,因而表現(xiàn)出較低的壓應(yīng)力波動狀態(tài)(-500~0 MPa),而P2點的壓應(yīng)力狀態(tài)要明顯強于P1點,其原因在于P2區(qū)域除了受相鄰金屬的約束外,還受模腔約束,因而壓應(yīng)力更顯著;當(dāng)成形進入后期,特別是中心區(qū)域充滿后,P1至P2之間的材料區(qū)域進入了三向壓應(yīng)力狀態(tài),表現(xiàn)為靜水壓力值的快速下降,相比P2區(qū)域,P1處金屬流動則更加困難,因此,成為了整個預(yù)成形截面上壓應(yīng)力最大的區(qū)域,因而在迭代過程中將持續(xù)的刪減單元,并最終促成了預(yù)成形的啞鈴結(jié)構(gòu).
圖6 十次迭代優(yōu)化的預(yù)成形表面節(jié)點變形歷史及對應(yīng)的靜水壓力值
圖7給出了傳統(tǒng)工程葉片葉身預(yù)成形設(shè)計結(jié)構(gòu)(橢圓形)與十次優(yōu)化后預(yù)成形結(jié)構(gòu)在鍛后的等效應(yīng)變比較.由圖7可見,總體上應(yīng)變較大的區(qū)域主要集中在葉片鍛件的進排氣邊緣:未優(yōu)化狀態(tài)下的預(yù)成形由于初始坯料體積較大,材料變形流動劇烈,造成了該區(qū)域異常高的應(yīng)變;而經(jīng)十次優(yōu)化的預(yù)成形鍛后在該區(qū)域的等效應(yīng)變則明顯減小.從圖8的等效應(yīng)變數(shù)值統(tǒng)計來看,最大最小單元等效應(yīng)變差由傳統(tǒng)預(yù)成形設(shè)計狀態(tài)下的約1.948減少至十次優(yōu)化時的1.486,表明預(yù)成形結(jié)構(gòu)的優(yōu)化使得單元等效應(yīng)變在波動范圍上顯著減小;單元平均等效應(yīng)變由1.18減少至0.833,表明單元總體的等效應(yīng)變量也明顯減小;而單元等效應(yīng)變偏差由0.382減小至0.370,說明變形體內(nèi)各單元之間的等效應(yīng)變偏差量在減小,單元等效應(yīng)變的趨同性得到提高.單元等效應(yīng)變偏差和單元平均等效應(yīng)變的計算方法見式(7)和式(8).通過以上分析可以得出,漸進優(yōu)化的預(yù)成形結(jié)構(gòu)有效地改善了鍛件在成形過程中的變形均勻性、減小了單元總體變形量,對最終鍛件的組織及性能有積極的影響.
圖7 傳統(tǒng)葉片預(yù)成形與十次優(yōu)化后預(yù)成形鍛后的等效應(yīng)變比較
圖9給出的是目標(biāo)函數(shù)值隨優(yōu)化迭代進程的變化情況.可以看到,Ψ值從初始欠充滿狀態(tài)下的-0.216,到第十次迭代終止時略微過充滿狀態(tài)的0.008,中間Ψ值的變化比較均勻,表明算法在優(yōu)化過程中運行有效、穩(wěn)定.相比于文獻[14]中的優(yōu)化結(jié)果,本文所優(yōu)化的預(yù)成形啞鈴結(jié)構(gòu)的兩端相對較大,其主要原因在于:雖然啞鈴的兩端都在增加單元,但增加的幅度是不一樣的.本文從欠填充狀態(tài)出發(fā),優(yōu)化過程增加單元的數(shù)量要大于減少單元的數(shù)量;而文獻[14]則正好相反.增加單元絕對數(shù)量上的差異造成了預(yù)成形幾何結(jié)構(gòu)上的差異,但兩優(yōu)化結(jié)構(gòu)的總體趨勢是一致的.由此證明,不論初始毛坯體積狀態(tài)如何,基于雙向漸進結(jié)構(gòu)的預(yù)成形優(yōu)化設(shè)計均可給出理想的、可靠的優(yōu)化結(jié)果.
圖8 傳統(tǒng)葉片預(yù)成形與十次優(yōu)化后預(yù)成形鍛后的等效應(yīng)變的數(shù)值統(tǒng)計
圖9 迭代次數(shù)與對應(yīng)的目標(biāo)函數(shù)值
本文采用了BESO算法,以靜水壓力為單元增刪判據(jù),以理想填充為目標(biāo)函數(shù),對二維葉片截面的預(yù)成形幾何外形進行了優(yōu)化設(shè)計.模擬及優(yōu)化結(jié)果表明:
1)優(yōu)化后的預(yù)成形結(jié)構(gòu)在完全充滿模腔的同時,獲得了較小、均勻的飛邊;成形過程中,變形材料流動均勻、在降低高應(yīng)變區(qū)域變形程度的同時坯料整體的變形均勻性明顯提高,預(yù)成形結(jié)構(gòu)的優(yōu)化設(shè)計效果比較理想.
2)從毛坯的欠填充狀態(tài)出發(fā)完成了預(yù)成形優(yōu)化過程,驗證了算法的穩(wěn)定性與可靠性.相比于其他預(yù)成形優(yōu)化算法,拓?fù)鋬?yōu)化算法有著較高的優(yōu)化精度與優(yōu)化效率,特別適用在其他方法難以求解時,可以方便地得到較好的優(yōu)化結(jié)果.
3)背景網(wǎng)格尺度對優(yōu)化過程及結(jié)果有重要影響,過少的網(wǎng)格將影響優(yōu)化精度,而過多的網(wǎng)格則導(dǎo)致計算量的增加,因此,合適的網(wǎng)格規(guī)模顯得十分重要.
[1] GAO T,YANG H,LIU Y L.Backward tracing simulation of precision forging process for blade based on 3D FEM[J].Transactions of Nonferrous Metals Society of China,2006,16(2):639-644.
[2] GAOT,YANG H,LIU Y L.Influence of dynamic boundary conditions on preform design for deformation uniformity in backward simulation[J].J Mater Proc Technol,2008,197(1/2/3):255-260.
[3] CAI J,LI F G,LIU T Y.A new approach of preform design based on 3D electrostatic field simulation and geometric transformation[J].Int J Adv Manuf Technol,2011,56(5/6/7/8):579-588.
[4] CAI J,LI F G,LIU T Y.Preform design for large-sized frame forging of Ti-Alloy based on 3-D electrostatic field simulation and geometric transformation[J].J Mater Eng P,2010,20(9):1491-1496.
[5] ZHAO X H,ZHAO G Q,WANG G C,et al.Sensitivity Analysis Based Multiple Objective Preform Die Shape Optimal Design in Metal Forging[J].J Mater Sci Technol,2006,22(2):273-278.
[6] ACHARJEE S,ZABARAS N.The continuum sensitivity method for the computational design of three-dimensional deformation processes[J].Comput Methods Appl Mech Engrg,2006,195(48/49):6822-6842.
[7] GUAN J,WANG G C,GUO T,et al.The microstructure optimization of H-shape forgings based on preforming die design[J].Materials Science and Engineering A,2009,499(1/2):304-308.
[8] 鄒 琳.遺傳算法的擠壓模具多目標(biāo)優(yōu)化設(shè)計與研究[D].武漢:華中科技大學(xué)博士論文,2004.ZOU Lin.Multi-objects optimization design of extrusion-die system using genetic algorithms[D].Wuhan: Huazhong University of Science and Technology,2004.
[9] YANG Y H,LIU D,HE Z Y,et al.Optimization of preform shapes by RSM and FEM to improve deformation homogeneity in aerospace forgings[J].Chinese Journal of Aeronautics,2010,23(2):260-267.
[10] TANG Y C,ZHOU X H,CHEN J.Preform tool shape optimization and redesign based on neural network response surface methodology[J].Finite El A,2008,44 (8):462-471.
[11] NACEUR H,GUO Y Q,BATOZ J L.Blank optimization in sheet metal forming using an evolutionary algorithm[J].J Mater Proc Technol,2004,151(1/2/3): 183-191.
[12] XIE Y,STEVEN G.A simple evolutionary procedure for structural optimization[J].Computers and Structures,1993,49(5):885-896.
[13] QUERIN O M,STEVEN G P,XIE Y M.Evolutionary structural optimization(ESO)using a bi-directional algorithm[J].Engineering Computations,1998,15 (8):1034-1048.
[14] LU B,OU H,CUI Z S.Shape optimisation of preform design for precision close-die forging[J].Struct Multidisc Optim,2011,44(6):1-12.
Optimal design of preform of blade forging based on Bi-directional evolutionary structural optimization
SHAO Yong1,2,LU Bin1,CHEN Jun1,GUO Ping-yi2
(1.National Die and Mold CAD Engineering Research Center,Shanghai Jiao Tong University,Shanghai 200030,China; 2.Jiangsu Provincial Key Laboratory of Advanced Welding Technology,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
Based on the Bi-directional evolutionary structural optimization(BESO),a new topology optimization method is proposed and adopted for preform optimization design of bulk metal forming,and the key technologies of topology optimization in detail such as optimal strategy,element removal and addition criteria,interpolation technology,etc are given.By utilizing the self-programmed code and deform-2D FE software,an blade preform optimal case,of which the objective is sufficient filling of die cavity and flash minimization,element removal and addition criteria is hydrostatic stress and initial blank state is insufficient filling,is implemented and evaluated.The result shows that the developed method is explicit in principle and simple to be carried out,it has high operating efficiency and optimal accuracy and can run automatically once be integrated in program code.
blade;bulk metal forming;preform design;evolutionary structural optimization;topology optimization
TG312 文獻標(biāo)志碼:A 文章編號:1005-0299(2012)06-0108-07
2012-05-09.
國家自然科學(xué)基金資助項目(51005150).
邵 勇(1978-),男,博士研究生,講師;
陳 軍(1969-),男,教授,博士生導(dǎo)師.
陸 彬,E-mail:binlu@sjtu.edu.cn.
(編輯 呂雪梅)