仲寧
該文主要探討了高新技術(shù)在有線通信系統(tǒng)和光通信系統(tǒng)中的應用。通信技術(shù)的發(fā)展引領(lǐng)著社會生活的進步,在科研、生產(chǎn)、生活和經(jīng)濟社會中發(fā)揮著重要的作用。高新技術(shù)在這一領(lǐng)域的不斷發(fā)展,更把通信行業(yè)引入了飛速發(fā)展的時代。
從20世紀90年代初以來,全球向信息密集的工作方式和生活方式的轉(zhuǎn)變,推動了通信技術(shù)的發(fā)展。無論對于經(jīng)濟社會還是國防保衛(wèi),搶險救災,均發(fā)揮著重要而不可替代的作用。只有實現(xiàn)通信系統(tǒng)在技術(shù)科技方面不斷更新,加快通信系統(tǒng)向網(wǎng)絡(luò)化、服務(wù)化、體系化與融合化方向的演進,才能突顯通信系統(tǒng)在社會生活領(lǐng)域支撐引領(lǐng)的作用和地位,創(chuàng)造更好的發(fā)展空間。
ATP系統(tǒng)在光通信系統(tǒng)中的應用隨著科技發(fā)展的日新月異,自由激光空間光通信已經(jīng)成為現(xiàn)代通信技術(shù)發(fā)展的新熱點。但從技術(shù)實現(xiàn)方面來講,由于激光通信具有信號光束窄、發(fā)散角小這樣的特點,從而導致APT(Acquisition Pointing Tracking)捕獲、跟蹤、瞄準相距較遠的運動體上的較窄信號光束相當困難。ATP系統(tǒng)是由粗跟蹤和精跟蹤單元構(gòu)成的復合跟蹤系統(tǒng),其主要功能是在粗跟蹤單元實現(xiàn)初始的捕獲和跟蹤,并將信標光引入精跟蹤的視場范圍內(nèi),然后精跟蹤單元實現(xiàn)更高帶寬的跟瞄,再將信標光穩(wěn)定在可通信的視場之內(nèi),為最終空間站光通信系統(tǒng)工程實現(xiàn)奠定了一定的技術(shù)基礎(chǔ)。
粗跟蹤單元。粗瞄準單元由一個安裝在精密光機組件上的收發(fā)天線,萬向支架驅(qū)動電機以及粗跟蹤探測器(CCD)組成,主要作用是捕獲目標和完成對目標的粗跟蹤。在捕獲階段,粗瞄準機構(gòu)接收由上位機根據(jù)已知的衛(wèi)星運動軌跡或星歷表給出的命令信號,將望遠鏡定位到對方通信終端的方向上。為確保入射的信標光在精跟瞄控制系統(tǒng)的動態(tài)范圍內(nèi),必須根據(jù)粗跟蹤探測器給出的目標脫靶量來控制萬向支架上的望遠鏡,使它的跟蹤精度必須保證系統(tǒng)的光軸處于精跟蹤探測器視場內(nèi),從而把信標光引入精跟蹤探測器的視場內(nèi)。
精跟蹤單元。精跟蹤單元的跟蹤精度將決定整個系統(tǒng)的跟蹤精度,它要求帶寬非常高,帶寬越高,對干擾的抑制能力就越強,從而可加快系統(tǒng)的反應速度,加強跟蹤精度。因此,設(shè)計一個高帶寬高精度的精跟蹤環(huán)是整個ATP系統(tǒng)的關(guān)鍵所在。在這一單元我們可采用高幀頻、高靈敏度、具有跳躍式讀出模式的面陣電荷耦合器件(CCD)傳感器。它基于深埋溝道移位寄存器技術(shù),可以獲得非常高的讀出速率、非常低的噪聲和非常高的動態(tài)范圍。通過由捕獲探測器(CCD)和定位探測器(OPIN)組成探測接收單元轉(zhuǎn)換,CCD完成捕獲與粗跟蹤,并將接收光引導至OPlN上,在OPIN中進行誤差信號的檢測,從而提高信標光捕捉精度。
控制單元。將捕捉的信號經(jīng)放大、整形和A/D變換處理后,在計算機中按一定的數(shù)據(jù)分配流程將信號輸入。然后通過計算機給出的速度控制信號和加速度控制信號,又經(jīng)數(shù)據(jù)分配接口送入D/A轉(zhuǎn)換與處理網(wǎng)絡(luò),使伺服電機按要求轉(zhuǎn)動并帶動天線轉(zhuǎn)動機構(gòu)分別在水平和俯仰兩個方位轉(zhuǎn)動,以調(diào)整天線的位置,達到自動捕獲、跟蹤、瞄準的目的。分數(shù)階Fourier變換技術(shù)在有線通信系統(tǒng)中的應用
有線通信是利用電線或者光纜作為通訊傳導的通信形式,它通過對現(xiàn)有各類網(wǎng)絡(luò)進行技術(shù)改造,與下一代新建網(wǎng)絡(luò)互通和融合,成為現(xiàn)代通信系統(tǒng)的重要支柱。要消除不理想信道和噪聲對信號的影Ⅱ向,必須應用新技術(shù)。分數(shù)階Fourier變換(FRFT)的通信技術(shù)原理是以線性調(diào)頻信號(chirp)作為調(diào)制信號,利用線性調(diào)頻信號在分數(shù)階里變換域的能量聚焦特性,從而提高系統(tǒng)的抗噪聲干擾和頻率選擇性衰減的能力。具體應用程序如下:
信號檢測與參數(shù)估計。分數(shù)階Fourier變換作為一種新型的線性時頻工具,其實質(zhì)是信號在時間軸上逆時針旋轉(zhuǎn)任意角度到u軸上的表示(U軸被稱為分數(shù)階Fourier(FRF)域),而該核是u域上的一組正交的chirp基,這就是分數(shù)階Fourier變換的chirp基分解特性。所以,在適當?shù)姆謹?shù)階Fourier域中,一個chirp信號將表現(xiàn)一個沖擊函數(shù)。因此,在信號檢測與參數(shù)估計中,我們的基本思路是以旋轉(zhuǎn)角口為變量進行掃描,求出觀測信號乒斤有階次的分數(shù)階Fourier變換,于是形成信號能量在由分數(shù)階域u和分數(shù)階次P組成的二維參數(shù)平面上的分布。根據(jù)最大峰值坐標可以檢測出chirp信號,并估計出峰值所對應的分數(shù)階次P和分數(shù)階域坐標,估計出信號的參數(shù)。
分集接收技術(shù)。分集接收是利用信號和信道的性質(zhì),將接收到的多徑信號分離成互不相關(guān)的多路信號,然后將多徑衰落信道分散的能量更有效的接收起來,處理之后進行判決,從而達到抗衰落的目的。在通信系統(tǒng)中,RAKE接收機由N個并行相關(guān)器和個合并器組成,每個相關(guān)器與發(fā)射信號的一個多徑分量匹配。在N個相關(guān)器前增加時移單元,就可在時間上將所有分量對齊,從而采用相同的本地參考信號。然后,相關(guān)器組的輸出送給合并器,將合并器輸出的判決變量送到檢測器進行判決。在選擇性合并方式下,在多支路接收信號中,選取信噪比最高的的支路信號作為輸出信號。
峰值輸出。信噪比系數(shù)呈現(xiàn)出一個典型的振蕩特性,且振蕩頻率與振蕩幅度與時頻面的旋轉(zhuǎn)角度和輸入信號相關(guān)。因此在采用分數(shù)階Fourier變換技術(shù)的實際使用中,在進行近似計算處理時需要特別注意,必須對近似處理帶來的誤差進行評估。
衛(wèi)星通信系統(tǒng)高新技術(shù)
衛(wèi)星通信在電子通信技術(shù)中最為先進,它也有很大的優(yōu)勢,包括通信距離遠并且容量大,通信線路質(zhì)量穩(wěn)定可靠以及機動性能優(yōu)越和靈活地組網(wǎng)等這些都是別的技術(shù)沒有的特點。但隨著不斷快速發(fā)展的全球信息化產(chǎn)業(yè),人們對信息的需求也越來越復雜多樣,電子通信技術(shù)已進入高速、多媒體、業(yè)務(wù)多樣化和可移動的個性化時代。目前的衛(wèi)星通信的一些關(guān)鍵技術(shù)也存在一些問題,它包括高速數(shù)據(jù)的業(yè)務(wù)需求。以及衛(wèi)星通信應用寬帶IP的難點。現(xiàn)代衛(wèi)星通信技術(shù)采用一些關(guān)鍵技術(shù)來解決問題,一個就是數(shù)據(jù)壓縮技術(shù),它能讓靜態(tài)和動態(tài)的數(shù)據(jù)壓縮都能有效提高通信系統(tǒng)在時間、頻帶、能量上的工作效率;第二個就是智能衛(wèi)星天線系統(tǒng);第三個就是寬帶IP衛(wèi)星通信技術(shù)的研究;第四個就是新型高效的數(shù)字調(diào)制及信道編碼技術(shù);第五個就是多址連接技術(shù)的改進和發(fā)展:第六個就是衛(wèi)星激光通信技術(shù)。
未來的衛(wèi)星通信數(shù)據(jù)率會通過激光通信來實現(xiàn),激光的優(yōu)勢會在互聯(lián)衛(wèi)星網(wǎng)中得到充分發(fā)揮,因為在那里經(jīng)常會應用到激光通信技術(shù),它在外層空間進行,所以不會受到大氣層的影響。還可以利用“星際激光鏈路”技術(shù)來縮短全球衛(wèi)星通信中的“雙跳”法的信號時長。有專家提出“在衛(wèi)星激光通信在比微波通信數(shù)據(jù)速率高一個數(shù)量級的理想情況下,天線孔徑尺寸會比微波通信衛(wèi)星減小一個數(shù)量級”的觀點。那么如果在空間無線電通信中以激光作為載體來進行工作和運行未來的衛(wèi)星之間進行激光通信是很有前途的。