陳美珍,潘佳慶
(集美大學(xué)理學(xué)院,福建廈門 361021)
一類非線性拋物方程Cauchy問題解的存在性條件
陳美珍,潘佳慶
(集美大學(xué)理學(xué)院,福建廈門 361021)
研究了帶源項的非線性拋物方程Cauchy問題解存在的必要條件以及解所應(yīng)具有的性質(zhì),通過把文獻(xiàn)中的線性算子推廣到形式較一般的帶源項的非線性拋物算子,利用其中處理線性問題的方法來處理非線性問題.
Cauchy問題;必要條件;L1可積
參考文獻(xiàn)
[1]張劍文,趙俊寧.非定常邊界層問題整體解的存在唯一性[J].中國科學(xué):A輯,2006,36(8):870-900.
[2]王培林,譚忠.具有Neumann邊界條件及臨界Sobolev指數(shù)的半線性拋物方程整體解的漸近性及Lq估計[J].廈門大學(xué)學(xué)報:自然科學(xué)版,2004,43(1):17-20.
[3]金春花,尹景學(xué).具非線性源的非散度型擴(kuò)散方程的臨界指標(biāo)[J].數(shù)學(xué)年刊:A輯,2009,30(4):525-538.
[4]孫法國,薛應(yīng)珍.一類非線性拋物型方程組解的整體存在及爆破[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2007,23(3):304-310.
[5]容躍堂,樊彩虹.一類帶有非局部源的退化反應(yīng)擴(kuò)散方程組解的整體存在與爆破[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué), 2009,25(1):39-46.
[6]屈改珠,朱春蓉.(3+1)維帶有源項的反應(yīng)擴(kuò)散方程的不變集和精確解[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2009,25(3):580-585.
[7]Daskalopoulos P,Pino M D.On nonlinear parabolic equations of very fast difusion[J].Arch.Rational Mech. Anal.,1997,137:363-380.
[8]Kubo M,Lu Q Q.Nonlinear degenerate parabolic equations with Neumann boundary condition[J].J.Math. Anal.Appl.,2005,307:232-244.
[9]Lair A V,Oxley M E.A necessary and sufcient condition for global existence for a degenerate parabolic boundary value problem[J].Journal of Mathematical Analysis and Applications,1998,221:338-348.
[10]Taliaferro S D.Isolated singularities of nonlinear parabolic inequalities[J].Math.Ann.,2007,338:555-586.
[11]谷超豪,李大潛,陳恕行,等.數(shù)學(xué)物理方程[M].2版.北京:高等教育出版社,2002.
[12]Vazquez J L.An Introduction to the Mathematical Theory of the Porous Medium Equation[M]//Shape Optimization and Free Boundaries.Dordrecht:Kluwer Academic,1992.
[13]Mizoguchi N,Quiros F,Vazquez J L.Multiple blow-up for a porous medium equation with reaction[J]. Mathematische Annalen,2011,350:801-827.
The existence conditions of solutions of a class of nonlinear parabolic equation
Chen Meizhen,Pan Jiaqing
(School of Science,Jimei University,Xiamen361021,China)
This paper discusses the necessary conditions of solution to a class of nonlinear parabolic equation and the nature of the solution.By extending the linear operator to a more general form of nonlinear parabolic operator with the source term,we use the method in document which was used to handle the linear problem to handle the nonlinear problem.
the Cauchy problem,the necessary conditions,L1integrable
O175.26
A
1008-5513(2013)06-0654-07
10.3969/j.issn.1008-5513.2013.06.016
2013-11-01.
陳美珍(1986-),碩士生.研究方向:非線性數(shù)學(xué)物理.
潘佳慶(1957-),博士,教授.研究方向:偏微分方程,流體力學(xué).
2010 MSC:35K10,35K15,35K55