張波
(淮北師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,安徽 淮北 235000)
可換環(huán)上一類不可解矩陣代數(shù)的導(dǎo)子
張波
(淮北師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,安徽 淮北 235000)
在含有單位元的交換環(huán)上構(gòu)造一類不可解矩陣代數(shù),并在其上定義內(nèi)導(dǎo)子和置換導(dǎo)子.決定了這一類矩陣代數(shù)的所有導(dǎo)子,給出其上的每一個(gè)導(dǎo)子都可以分解成一個(gè)內(nèi)導(dǎo)子和一個(gè)置換導(dǎo)子的直和形式.
矩陣代數(shù);導(dǎo)子;直和
設(shè)R是一個(gè)含單位元的交換環(huán),n是正整數(shù),Rn是R上n元行向量的集合,Rn×n是R上n×n階矩陣的全體,E表示n階單位陣.
設(shè)X是一個(gè)R-代數(shù),?:X→X是一個(gè)R-模同態(tài),且對(duì)任意的x,y∈X,都有
則稱?是R-代數(shù)X的一個(gè)導(dǎo)子.以DerX表示R-代數(shù)X上的導(dǎo)子的全體.
王登銀[1-2],曹佑安[3]和J?ndrup[4]發(fā)表了一系列文章,研究含單位元的交換環(huán)上矩陣代數(shù)的導(dǎo)子和自同構(gòu)問題.本文討論了含單位元的交換環(huán)上的一類不可解矩陣代數(shù)的全部導(dǎo)子.
[1]WANG Dengyin,YU Qiu,OU Shikun.Derivations of certain lie algebras of upper triangular matrices over commutative rings[J].數(shù)學(xué)研究與評(píng)論,2007,27(3):474-478.
[2]WANG Dengyin,YU Qiu.Derivations of the parabolic subalgebras of general linear Lie algebra over a commutative ring[J].Linear Algebra Appl,2006,418:763-774.
[3]CAO Youan,TAN Zuowen.Automorphisms of the Lie algebras of strictly upper triangular matrices over certain commuta?tive rings[J].Linear Algebra Appl,2003,360:105-122.
[4]J?NDRUP S.Automorphisms and derivations of upper triangular matrix rings[J].Linear Algebra Appl,1995,221:205-218.
Derivations of an Unsolvable Matrix Algebra over a Commutative Ring
ZHANG Bo
(School of Mathmatical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)
An unsolvable matrix algebra over a commutative ring with identity is constructed,and the inner derivation and permutation derivation are defined in this paper.An explicit description of the derivations of this matrix algebra is given,that is,each derivation can be represented to an expression of direct sum of an in?ner derivation and an permutation derivation.
matricx algebras;derivations;direct sum
O 152
A
2095-0691(2013)04-0023-03
2013-05-09
安徽省高校自然科學(xué)基金項(xiàng)目(KJ2009B082Z);淮北師范大學(xué)青年科研基金項(xiàng)目(700276)
張 波(1977- ),男,安徽蕭縣人,講師,碩士,主要從事代數(shù)方面的研究.