黃賢通
?
三元組矩陣的三類(lèi)逆二次特征值問(wèn)題
黃賢通
(贛南師范學(xué)院 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,江西 贛州 341000)
引進(jìn)記號(hào):
證明 用數(shù)學(xué)歸納法.
綜上,定理1成立.
本文將運(yùn)用到以下廣義逆矩陣?yán)碚摚?/p>
其中,與問(wèn)題I對(duì)應(yīng)有:
同理,與問(wèn)題II對(duì)應(yīng)有:
再同理,與問(wèn)題III對(duì)應(yīng)有:
由式(1)知,這些方程個(gè)數(shù)少于變量個(gè)數(shù)的非線性方程組有無(wú)窮多個(gè)解. 利用廣義逆矩陣?yán)碚摚梢?可得問(wèn)題I/II/III的解:
以問(wèn)題I為例,說(shuō)明上述解表達(dá)式的正確性.
Step3 由式(1)知如下方程組成立:
由Matlab軟件編程,可計(jì)算出:
于是由定理1計(jì)算知問(wèn)題I有特解:
另法,可依定理5中解的顯式表達(dá)式來(lái)計(jì)算:
Step4* 問(wèn)題I有無(wú)窮多個(gè)解:
[1] LANCASTER P, PRELLS U. Inverse problems for damped vibrating systems [J]. Journal of Sound and Vibration, 2005, 283: 891-914.
[2] DONG Bo, LIN M M, CHU M T. Parameter reconstruction of vibration systems from partial eigen information [J]. Journal of Sound and Vibration, 2009, 327: 391–401.
[3] 王正盛. 阻尼彈簧一質(zhì)點(diǎn)系統(tǒng)中的逆二次特征值問(wèn)題[J]. 高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào),2005, 27(3): 217-224.
[4] CAI Yunfeng, KUO Yuencheng, LIN Wenwei, et al. Solutions to a quadratic inverse eigen-value problem [J]. Linear Algebra and Its Applications, 2009, 430: 1590-1606.
[5] DATTA B N, SOKOLOV V. A solution of the affine quadratic inverse eigen-value problem [J]. Linear Algebra and Its Applications, 2011, 434: 1745-1760.
[6] LIU Jiansheng. The application of matrix theory in second order electrical circuits designing[C]//Proceedings of the eighth international conference on matrix theory and its applications in China, advances in matrix theory and its applications:series B. Taiyuan: [s.n.], 2008: 202-205.
[7] 袁新娣,黃賢通. 基于狀態(tài)空間法的復(fù)雜正弦穩(wěn)態(tài)電路相量計(jì)算[J]. 制造業(yè)自動(dòng)化,2010, 32(6): 91-94.
[8] 謝冬秀,雷紀(jì)剛,陳桂芝. 矩陣?yán)碚摷胺椒╗M]. 北京:科學(xué)出版社,2011: 260-267.
[責(zé)任編輯:熊玉濤]
Three Types of the Quadratic Inverse Eigen-value for theMatrix
HUANGXian-tong
(College of Mathematics & Computer Science, Gan-nan Normal University, Ganzhou,341000, China)
1006-7302(2013)04-0021-06
O302
A
2013-05-23
江西省教育廳科技項(xiàng)目(GJJ10585)
黃賢通(1966—),男,江西南康人,教授,博士,主要研究領(lǐng)域?yàn)閿?shù)值代數(shù)及其應(yīng)用.