国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于S變換的羅音信號檢測算法*

2013-08-19 02:45李真真吳效明
關(guān)鍵詞:希爾伯特幅值頻譜

李真真 吳效明

(華南理工大學(xué) 生物科學(xué)與工程學(xué)院,廣東 廣州 510006)

羅音是一種重要的異常呼吸音,也稱為間斷性音.通過檢測羅音出現(xiàn)的時(shí)刻、個(gè)數(shù)、分布等特性,可提取肺部疾病的相關(guān)信息[1-3].傳統(tǒng)的羅音由醫(yī)生聽診辨析,主觀性強(qiáng),易受外部因素的影響.自動化羅音檢測更為客觀穩(wěn)定,是未來計(jì)算機(jī)輔助診斷領(lǐng)域的重要研究課題之一[4-5].

當(dāng)前羅音信號檢測的主要方法有基于連續(xù)小波變換、小波包分解、小波網(wǎng)絡(luò)等的方法,這類方法一般以小波重建中小波系數(shù)的異動來指示羅音的出現(xiàn)[6-8].另外,還有基于經(jīng)驗(yàn)?zāi)B(tài)分解的方法,經(jīng)驗(yàn)?zāi)B(tài)分解法理論上比具有固定形態(tài)的小波更能體現(xiàn)羅音信號自身的特性,但仍欠缺固有模態(tài)函數(shù)與羅音特征的內(nèi)在聯(lián)系[9-10].這些現(xiàn)有方法的主要缺點(diǎn)是將信號中的非平穩(wěn)分量都判定為羅音信號,因此,信號中非羅音的非平穩(wěn)分量(如摩擦音、心音等)會造成羅音檢測的誤判.基于分?jǐn)?shù)階希爾伯特變換的檢測方法結(jié)合了羅音的非平穩(wěn)特征與時(shí)域形態(tài)特征,避免了非羅音的非平穩(wěn)分量的影響,取得了較高的羅音檢測率[11].但由于羅音信號隨機(jī)性強(qiáng)、變異性大,仍然需要引入更新、更有效的信號處理方法以實(shí)現(xiàn)更穩(wěn)定的羅音檢測系統(tǒng).

S 變換是由Stockwell 等[12]于1996 年提出的,是一種基于頻率的時(shí)頻分布變換,其在傳統(tǒng)的短時(shí)傅里葉變換的高斯窗中引入了頻率因子,使得該變換在高頻處的窗口變窄,具有更高的時(shí)間分辨率,而在低頻處的窗口變寬,具有更高的頻率分辨率[12-15].這一特性既可表征羅音信號在頻域上的突變特征,又可表征羅音信號在時(shí)域上的形態(tài)特征.文中基于S 變換提出了一種羅音信號檢測算法,并將該算法的實(shí)驗(yàn)結(jié)果與基于分?jǐn)?shù)階希爾伯特變換的算法進(jìn)行了比較,以驗(yàn)證文中算法的有效性.

1 S 變換

S 變換是一種新的基于頻率的時(shí)頻變換方法,與短時(shí)傅里葉變換和連續(xù)小波變換密切相關(guān).短時(shí)傅里葉變換STFT(,f)為

S 變換與連續(xù)小波變換的關(guān)系為

其中母小波ω(t,f)為

由于式(5)不滿足小波的允許性條件,因此S變換不屬于小波變換,但頻率因子的作用使S 變換具有與小波變換類似的分析信號時(shí)間與頻率局部變化的能力,可有效地從信號中提取出特征.

2 基于S 變換的羅音信號檢測

2.1 呼吸音中的羅音

羅音是由閉合氣道的突然不正常打開產(chǎn)生的,其持續(xù)時(shí)間一般小于20 ms,頻率范圍為100~2 000 Hz,時(shí)域波形起始于一個(gè)振蕩,并逐步展寬.包含羅音信號的一段呼吸音信號如圖1 所示,羅音信號檢測就是要在羅音出現(xiàn)時(shí)將其從呼吸音信號中自動標(biāo)記出來.

圖1 呼吸音中實(shí)際羅音的波形示例Fig.1 Example of waveform of real crackles in respiratory sounds

2.2 仿真羅音信號的S 變換

羅音信號呈現(xiàn)特定形態(tài),其時(shí)域基本形態(tài)可表示為仿真羅音信號

式中,a1=0.5,a2=1.49,a3=0.78,a4=2.0,A 為幅值因子.對仿真羅音信號做S 變換,考察羅音信號的時(shí)頻域特征.

如圖2(a)所示,在一段正常呼吸音中插入幅值因子分別為0.8 和0.6 的兩個(gè)仿真羅音信號Sc(t).對信號做S 變換得到的時(shí)頻譜圖S(t,f)如圖2(b)所示,譜圖中存在兩個(gè)高峰值區(qū)域,其頻率范圍大致為80~200 Hz,其時(shí)間軸上分別對應(yīng)于兩個(gè)仿真羅音信號;兩個(gè)高峰值區(qū)域的能量強(qiáng)度與仿真羅音信號的幅值成正比,羅音信號的幅值小到與呼吸音信號背景相當(dāng)(如幅值因子為0.6 的仿真羅音信號)時(shí),S 變換的譜圖中仍出現(xiàn)高峰值區(qū).因此,可利用羅音信號對應(yīng)于S 變換中的高峰值區(qū)域的特征進(jìn)行羅音信號檢測.在頻率軸上對S 變換譜圖做積分,可得J(t),如圖2(c)所示,對應(yīng)于仿真羅音信號出現(xiàn)的時(shí)刻,J(t)也出現(xiàn)相應(yīng)的峰值,可通過檢測J(t)局部峰值實(shí)現(xiàn)羅音信號檢測.

圖2 仿真羅音信號的S 變換時(shí)頻譜圖Fig.2 S transform time-frequency spectra of simulated crackle signals

2.3 實(shí)際羅音信號檢測算法流程

實(shí)際羅音信號檢測的具體做法是:首先將肺音信號分為若干信號段,在每個(gè)信號段前加入一個(gè)參考的標(biāo)準(zhǔn)仿真羅音信號段構(gòu)成測試信號段T(t),對測試信號段做S 變換,得到相應(yīng)的時(shí)頻譜圖S(t,f);接著去噪,去除譜圖中能量較弱的成分,以突出譜圖中的高峰值區(qū)域,得到^S(t,f);然后對^S(t,f)沿頻率軸積分,得到隨時(shí)間變化的譜圖信號J(t);最后對局部峰值進(jìn)行檢測并標(biāo)記羅音,得到檢測結(jié)果R(t).設(shè)置標(biāo)準(zhǔn)仿真羅音信號參考段的關(guān)鍵作用在于維持S 變換時(shí)頻譜圖中的全局峰值水平,以排除小峰值群對檢測判別的影響,標(biāo)準(zhǔn)仿真羅音信號幅值設(shè)定的準(zhǔn)則是加入?yún)⒖夹盘柖吻昂蟠郎y信號段的總功率不變.以圖1 中實(shí)際羅音信號為例,其檢測流程及分步結(jié)果如圖3 所示.

圖3 實(shí)際羅音信號檢測算法流程圖Fig.3 Flowchart of detection algorithm of real crackle signals

3 實(shí)驗(yàn)仿真

采用2.3 節(jié)所述檢測算法進(jìn)行呼吸音中羅音信號的檢測實(shí)驗(yàn).呼吸音信號采用通用的美國胸科醫(yī)學(xué)會教學(xué)呼吸音信號,實(shí)驗(yàn)采樣率為11 kHz,對呼吸音信號隨時(shí)間取5000 個(gè)采樣點(diǎn)為一個(gè)檢測信號段,并以50%疊加截取,共檢測了4 組樣本,檢測結(jié)果如表1 所示.其中,正確檢測出的信號段數(shù)為Nc,總檢測段數(shù)為Nt,檢測正確率ra=(Nc/Nt)×100%,正確檢測出的羅音數(shù)為NTP,漏檢的羅音數(shù)為NFN,誤檢的羅音數(shù)為NFP,敏感性指標(biāo)SEN=NTP/(NTP+NFN)× 100%,陽性預(yù)測指標(biāo)PPV = NTP/(NTP+NFP)×100%.

表1 文中算法的檢測結(jié)果Table 1 Detection results of the proposed algorithm

可見,基于S 變換的羅音信號檢測算法是有效的,檢測正確率為93.70%,誤判率與漏判率均為5.68%.產(chǎn)生漏判的主要原因是羅音信號的幅值較小且與幅值較大的羅音信號臨近時(shí),該段信號的局部峰值判別會受到幅值較大的羅音信號對應(yīng)的峰值的影響.幅值較大的羅音信號的局部波峰會影響臨近小幅值羅音信號的局部波峰的形態(tài)而導(dǎo)致幅值較小的羅音信號被漏判.若無大幅值羅音信號的干擾,則小幅值羅音信號仍可被檢測到.如圖4 所示的檢測結(jié)果中,2 號羅音信號的幅值較小,受1 號羅音信號的影響而被漏判,3 號羅音信號實(shí)際上是由2 號羅音信號平移到該位置的,雖然2 號羅音信號未被檢測到,形態(tài)幅值完全一致的3 號羅音信號卻可被檢測到.

圖4 羅音信號檢測漏判情形示例Fig.4 Example of missing detection of crackle signal

產(chǎn)生誤判的主要原因是存在形態(tài)類似羅音信號的非羅音信號,該信號在S 變換時(shí)頻譜上的特征與羅音信號相似,易被誤判為羅音信號.如圖5 所示,誤判的信號與羅音信號的形態(tài)類似,J(t)曲線也出現(xiàn)峰值,因此被誤判為羅音信號.誤判與漏判仍有改進(jìn)的空間,在S 變換后的羅音信號特征提取中,J(t)單維積分未能充分提取二維S 變換譜圖的特征信息,這有待進(jìn)一步研究.

圖5 羅音信號檢測誤判情形示例Fig.5 Example of false detection of crackle signal

羅音分為粗羅音與細(xì)羅音,其中頻率較高的是細(xì)羅音.在4 組測試樣本中,前2 組為粗羅音信號段,后2 組為細(xì)羅音信號段.在S 變換的時(shí)頻譜圖中,也體現(xiàn)了細(xì)羅音信號的頻率更高的基本特性,如圖6 所示,前兩個(gè)粗羅音信號的局部高峰區(qū)對應(yīng)的頻率范圍為100~300 Hz,后兩個(gè)細(xì)羅音信號的局部高峰區(qū)對應(yīng)的頻率范圍為200~800 Hz;另外,從峰值區(qū)域的形態(tài)上看,粗羅音信號對應(yīng)的峰值區(qū)域更寬更扁,而細(xì)羅音信號對應(yīng)的峰值區(qū)域更為細(xì)長.粗細(xì)羅音信號所反映的疾病類型不同,其分類具有一定的臨床意義,因此,進(jìn)一步的研究中,可依據(jù)粗細(xì)羅音信號在S 變換時(shí)頻譜圖上的峰值區(qū)域形態(tài)特征進(jìn)行羅音分類.

圖6 粗細(xì)羅音信號S 變換時(shí)頻譜圖的對比Fig.6 Comparison of S transform time-frequency spectra between coarse and fine crackle signals

由于羅音信號的隨機(jī)性強(qiáng),變異性大,檢測樣本對檢測結(jié)果的影響較大.現(xiàn)有檢測算法的正確率一般在90%以上,其中基于小波變換的檢測算法的正確率在90%~95%之間.采用前面4 組測試樣本進(jìn)行實(shí)驗(yàn),基于分?jǐn)?shù)階希爾伯特變換的羅音信號檢測算法的檢測正確率為91.20%,誤判率為6.40%,漏判率為2.80%,顯然,文中算法對誤判的情形有所改善.此外,文中算法的計(jì)算速度比基于分?jǐn)?shù)階希爾伯特變換的算法快,這是由于分?jǐn)?shù)階希爾伯特變換受到信號長度的影響,每次只能計(jì)算500 個(gè)采樣點(diǎn),每階希爾伯特變換計(jì)算的數(shù)量級為0.1 s,10 階以上的希爾伯特變換的計(jì)算時(shí)間已達(dá)1 s,而文中算法每次計(jì)算5000 個(gè)采樣點(diǎn),整個(gè)算法的計(jì)算時(shí)間的數(shù)量級也僅為1 s.

4 結(jié)語

文中提出了一種基于S 變換的時(shí)頻譜圖特征提取的羅音信號檢測算法.先對含羅音的呼吸音信號做S 變換,再對S 變換的時(shí)頻譜沿頻率軸積分,降維得到一維特征曲線并做局部峰值檢測,即可得到最終的自動檢測結(jié)果.實(shí)驗(yàn)結(jié)果表明,S 變換優(yōu)越的時(shí)頻分辨性能可有效地提取羅音信號信息,該算法的檢測效果優(yōu)于現(xiàn)有的檢測算法.

S 變換時(shí)頻譜圖降維方法未能充分提取到羅音信號的特征信息,因此,由S 變換檢測羅音信號的方法仍有提升的空間,可進(jìn)一步研究從S 變換時(shí)頻譜中提取與羅音信號相對應(yīng)的二維特征的方法.另外,粗細(xì)羅音信號在S 變換時(shí)頻譜圖中也表現(xiàn)出一定的差異,可根據(jù)提取的二維特征進(jìn)行粗細(xì)羅音分類.

[1]Reichert S,Gass R,Brandt C,et al.Analysis of respiratory sounds:state of the art[J].Clinical Medicine:Circulatory,Respiratory and Pulmonary Medicine,2008,2:45-58.

[2]Marques A,Bruton A,Barney A.The reliability of lung crackle characteristics in cystic fibrosis and bronchiectasis patients in a clinical setting[J].Physiological Measurement,2009,30:903-912.

[3]Gavriely N.Breath sounds methodology [M].Boca Raton:CRC Press,1995:18-22.

[4]Sovijarvi A R A,Vanderschoot J,Earis J E.Standardization of computerized respiratory sound analysis[J].European Respiratory Review,2000,10(77):585.

[5]Charbonneau G,Ademovic E,Cheethanm B M G,et al.Basic techniques for respiratory sound analysis[J].European Respiratory Review,2000,10(77):625-636.

[6]Hadjileontiadis L J,Panas S M.Sepatation of discontinuous adventitious sounds from vesicular sounds using a waveletbased filter[J].IEEE Transactions on Biomedical Engineering,1997,44(12):1269-1281.

[7]Lu X,Bahoura M.An integrated automated system for crackles extraction and classification[J].Biomedical Signal Processing and Control,2008,3(3):244-254.

[8]Yeginer M,Kahya Y P.Feature extraction for pulmonary crackle representation via wavelet networks[J].Computers in Biology and Medicine,2009,39(8):713-721.

[9]Sonia C,Ramon G,Tomas A.Crackle sounds analysis by empirical mode decomposition[J].IEEE Engineering in Medicine and Biology Magazine,2007,26(1):40-47.

[10]Li Z Z,Du M H.HHT based lung sound crackle detection and classification[C]∥Proceedings of International Symposium on Intelligent Signal Processing and Communications Systems.Hong Kong:IEEE,2005:385-388.

[11]李真真,杜明輝,吳效明.基于分?jǐn)?shù)階希爾伯特變換的羅音特征提?。跩].華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2011,39(12):38-42.Li Zhen-zhen,Du Ming-hui,Wu Xiao-ming.Crackle feature extraction based on fractional Hilbert transform[J].Journal of South China University of Technology:Natural Science Edition,2011,39(12):38-42.

[12]Stockwell R G,Mansinha L,Lowe R P.Localization of the complex spectrum:the S transform[J].IEEE Transactions on Signal Processing,1996,44(4):998-1001.

[13]Pei S C,Wang P W.Discrete inverse S transform with least square error in time-frequency filters [J].IEEE Transactions on Signal Processing,2010,58(7):3557-3568.

[14]Robert A B,Lauzon L M,Richard F.A general description of linear time-frequency transforms and formulation of a fast,invertible transform that samples the continuous S-transform spectrum nonredundantly [J].IEEE Transactions on Signal Processing,2010,58(1):281-290.

[15]Suja S,Jerome J.Pattern recognition of power signal disturbances using S-transform and TT transform[J].International Journal of Electrical Power & Energy Systems,2010,32(1):37-53.

猜你喜歡
希爾伯特幅值頻譜
一個(gè)真值函項(xiàng)偶然邏輯的希爾伯特演算系統(tǒng)
一種用于深空探測的Chirp變換頻譜分析儀設(shè)計(jì)與實(shí)現(xiàn)
有趣的希爾伯特
一種基于稀疏度估計(jì)的自適應(yīng)壓縮頻譜感知算法
基于S變換的交流電網(wǎng)幅值檢測系統(tǒng)計(jì)算機(jī)仿真研究
正序電壓幅值檢測及諧波抑制的改進(jìn)
基于希爾伯特-黃變換和小波變換的500kV變電站諧振數(shù)據(jù)對比分析
基于希爾伯特- 黃變換的去噪法在外測數(shù)據(jù)處理中的應(yīng)用
低壓電力線信道脈沖噪聲的幅值與寬度特征
基于零序電壓幅值增量的消弧線圈調(diào)諧新方法