劉 睿 周江羽 張 莉 劉曉峰 韋振權(quán) 錢 星 帥慶偉 廖錦芳
(1.中國地質(zhì)大學(xué)(武漢)構(gòu)造與油氣資源教育部重點(diǎn)實(shí)驗(yàn)室 武漢 430074;2.廣州海洋地質(zhì)調(diào)查局 廣州 510760)
深水扇作為深水重力流的重要產(chǎn)物,以其規(guī)模大、砂質(zhì)含量高的顯著特點(diǎn),已成為深水油氣勘探的優(yōu)質(zhì)目標(biāo)[1~6]。工業(yè)需求極大的促進(jìn)了深水扇相關(guān)科學(xué)研究的發(fā)展。Walker通過對(duì)古代、現(xiàn)代深水扇模式的歸納和總結(jié),建立了深水扇經(jīng)典沉積模式,突出了深水扇的典型識(shí)別標(biāo)志,如扇上水道—堤壩、朵體、扇體疊置等[4,7];Mitchum 等基于層序地層理論,建立了首個(gè)與深水扇相關(guān)的地震(層序)地層模型,強(qiáng)調(diào)了海平面變化對(duì)深水扇發(fā)育的控制作用[8,9];Nilsen等開始發(fā)現(xiàn)單一的深水扇沉積模式存在局限性,并提出將深水扇劃分為大型三角洲物源供給下的細(xì)粒型和峽谷物源供給下的粗粒型兩類[10];Richards等基于深水扇發(fā)育的物源背景(點(diǎn)、線、多物源以及富泥質(zhì)、富砂質(zhì)、富礫物源)和構(gòu)造背景(斜坡、坡腳、盆底平原)對(duì)深水扇進(jìn)行了進(jìn)一步類型劃分,并分別建立相模式,突出了不同物源和構(gòu)造背景對(duì)深水扇發(fā)育的控制作用[2,6,11,12]。
眾多模式基本總結(jié)了深水扇發(fā)育的控制因素,顯示了水道和朵體為深水扇的基本組件。前人對(duì)這些組件進(jìn)行了深入分析,特別是相關(guān)的限制性水道[13~16]、水道—堤壩體系[16~19]、水道—朵體轉(zhuǎn)換帶[20]及水道—朵體體系[21~27],系統(tǒng)總結(jié)了這些構(gòu)成組件的形態(tài)、結(jié)構(gòu)以及巖性特征,將其發(fā)育的控制因素再次歸納為地形限制性、物源供給(頻率、強(qiáng)度)構(gòu)造活動(dòng)等,并建立起了相應(yīng)儲(chǔ)層模型。此外,通過物理模擬與巖芯、露頭觀察,對(duì)于深水扇相關(guān)沉積機(jī)理產(chǎn)生了新的認(rèn)識(shí),從傳統(tǒng)的濁流發(fā)展到高密度濁流、碎屑流,甚至不同階段存在不同流體狀態(tài)的轉(zhuǎn)換[1,28,29]。
隨著國內(nèi)深水油氣勘探的不斷深入,先后在南海北部深水區(qū)發(fā)現(xiàn)了珠江深水扇系統(tǒng)[5,30~32]、紅河海底扇[33],其中,珠江深水扇油氣勘探已經(jīng)取得了重大突破。南海北部深水扇系統(tǒng)與孟加拉扇、印度深水扇的發(fā)育均以青藏高原隆升為物源背景[5,31,34,35],它們均可歸納為大型河流三角洲供給下的點(diǎn)或線型物源作用結(jié)果。不同的是珠江深水扇、紅河海底扇規(guī)模較小且均局限于陸坡上,而印度扇、孟加拉扇則規(guī)模巨大并已經(jīng)延展至深海平原。南海北部的深海平原區(qū)——西北次海盆內(nèi)是否存在大規(guī)模深水扇成為疑點(diǎn)。
南海北部瓊東南中央峽谷的發(fā)育為西北次海盆內(nèi)發(fā)育深水扇創(chuàng)造了有利條件[33,34,36~42]?;诂F(xiàn)有大量高品質(zhì)2D地震資料,對(duì)南海北部深海平原區(qū)西北次海盆內(nèi)大規(guī)模深水扇系統(tǒng)進(jìn)行了識(shí)別。深水扇系統(tǒng)以瓊東南中央峽谷—水道為主要物源供給通道。本文就該深水扇系統(tǒng)的地震反射結(jié)構(gòu)特征、物源供給以及時(shí)空演化規(guī)律進(jìn)行分析。
西北次海盆位于南海北部深水區(qū),西部為西沙海槽,北部為南海北部陸坡,西南部為中西沙隆起,東部為中央海盆,現(xiàn)今盆地最大水深可達(dá)3 500 m(圖1a、b)。晚白堊紀(jì)南海北部陸緣發(fā)生近S—N向裂陷,形成一系列NEE—NE向斷陷;32~16 Ma南海進(jìn)入擴(kuò)張期[43~45],擴(kuò)張過程受印度—?dú)W亞板塊碰撞、哀牢山—紅河斷裂帶左旋走滑以及地幔柱上涌聯(lián)合機(jī)制作用[46];32~30 Ma西北次海盆與中央海盆發(fā)生自東向西“剪刀式”擴(kuò)張,伴隨海水侵入,沉積環(huán)境從陸相過渡為海陸交互相;28 Ma左右西北次海盆擴(kuò)張衰減,中央海盆繼續(xù)擴(kuò)張,南海北部邊緣疊加在早期斷陷之上的陸架—陸坡—海盆格局基本成型,西北次海盆沉積環(huán)境轉(zhuǎn)變?yōu)樯詈O?25~23 Ma左右南海擴(kuò)張軸向南躍遷,隨之西北次海盆停止擴(kuò)張并進(jìn)入初始熱沉降階段,躍遷過程中南海北部陸架坡折線從白云凹陷南側(cè)跳躍至北側(cè);16 Ma左右南海海盆停止擴(kuò)張,海盆整體進(jìn)入熱沉降期;10.5~5 Ma南海西北部鶯—瓊盆地快速沉降,鶯—瓊盆地坡折線向西北后退形成向東開口的喇叭狀地形,西沙海槽斷層活動(dòng)性也逐漸加強(qiáng)[45,47~55],與此同時(shí),10.5 Ma 左右全球海平面的顯著下降(圖1c),中央峽谷—水道開始發(fā)育,向西北次海盆輸送大量沉積物[34,36,38,56,57],據(jù)此,Wang等預(yù)測(cè)了西北次海盆內(nèi)深水扇的存在[33],Yuan等在西北次海盆內(nèi)初步識(shí)別出深水侵蝕水道[34]。
圖1 (a)研究區(qū)地形圖,①紅河海底扇(據(jù)Wang等,2012),②瓊東南中央峽谷—水道及相關(guān)鉆井(據(jù)許懷智等,2012),③研究區(qū),④珠江深水扇系統(tǒng)(據(jù)彭大鈞等,2007),箭頭指示不同物源;(b)西北次海盆深水扇系統(tǒng)平面展布圖,F(xiàn)1-F3及L1-L4指示剖面線,I-V代表深水扇復(fù)合體/期;(c)地震反射界面與海平面變化關(guān)系,紅色箭頭指示瓊東南中央峽谷侵蝕期次Fig.1 (a)Topographic map of the study area,①Red River submarine fan(Accorded to Wang et al.,2012),②Qiongdongnan center canyon-channel and boreholes(Accorded to Xu et al.,2012),③Study area,④Pearl River deep-water fan system(Accorded to Peng et al.,2012),Arrows indicate the different provenance systems,A and B show the cross sections in Fig.8a and 9;(b)Sketch distribution of the deep-water fan system complex in the Northwestern Sub-basin,F(xiàn)1-F3 and L1-L4 show the cross sections in Fig.3-7;(c)Relations between sea level variation and seismic reflectors,Red arrows show the central canyon erosion times
圖2 深水扇與深水水道空間特征示意圖(據(jù)Walker,1978;Jonathan等,2012改編)Fig.2 Sketch map of space characteristics of deepwater fan and channels(modified after Walker,1978;Jonathan,et al.,2012)
基于Walker等[7]建立的深水扇經(jīng)典沉積模式(圖2),以及地震反射剖面中典型的高振幅反射(High Amplitude reflections,HARs)特點(diǎn),在西北次海盆內(nèi)自T4地震反射界面(10.5 Ma左右)以上識(shí)別出大規(guī)模深水扇。
經(jīng)典單一物源深水扇模式中,上扇存在物源供給峽谷的延伸,中扇的重要特征為大規(guī)模扇體相互疊置區(qū),下扇水道逐漸消失,據(jù)此可將本區(qū)深水扇劃分為上扇、中扇以及下扇三部分。
上扇為限制性水道復(fù)合體發(fā)育帶,限制性水道復(fù)合體具有整體強(qiáng)反射、寬緩的U狀形態(tài),寬度可達(dá)4 km左右,厚度可達(dá)0.5 s(雙程反射時(shí)間),內(nèi)部填充有相對(duì)雜亂、弱反射特征的小規(guī)模U或V形水道,以及平行、連續(xù)、中低頻、強(qiáng)反射的內(nèi)岸壩,不太發(fā)育外岸堤壩,單個(gè)小型水道寬度在0.5~1.5 km左右,水道表現(xiàn)出明顯的向SE方向的側(cè)向遷移特點(diǎn)(圖3-F1,圖4);
中扇存在明顯扇體的空間疊置,單個(gè)扇體內(nèi)部為大規(guī)模水道—堤壩復(fù)合體,水道—堤壩復(fù)合體在剖面上具有整體強(qiáng)反射特征、呈透鏡狀或海鷗翼狀形態(tài),其寬度可達(dá)10 km以上,厚度在0.3 s(雙程反射時(shí)間)左右,內(nèi)部仍填充有相對(duì)較小規(guī)模的U或V形雜亂反射水道,水道外側(cè)發(fā)育亞平行、連續(xù)、中低頻、強(qiáng)反射的外岸堤壩,部分堤壩外緣存在具有雜亂反射特征的滑塌體(圖3-F2,圖5);
下扇水道消散,發(fā)育典型的水道—朵體體系,水道—朵體體系剖面上具有整體亞平行、連續(xù)、強(qiáng)反射特征,呈寬緩的透鏡狀或上突丘狀形態(tài),單個(gè)水道—朵體體系寬度可達(dá)16 km以上,厚度較薄;內(nèi)部水道特征不太明顯,開始彌散消亡;朵體的邊緣可見側(cè)向的上超特征(圖33-F3)。
2.2.1 扇體內(nèi)水道的充溢改道
本區(qū)深水扇系統(tǒng)的上扇部位剖面顯示,存在多期“侵蝕——廢棄”的水道復(fù)合體(圖4)。Flood等[58]首次在Amazon扇的上扇部位發(fā)現(xiàn)這一現(xiàn)象,將其成因歸納為間歇性強(qiáng)烈重力流作用突破堤壩的束縛,流體破壞堤壩邊坡并漫溢改道,新的水道侵蝕形成,舊水道廢被棄。本區(qū)深水扇發(fā)育的第一次深水重力流在三級(jí)層序T4界面(約10.5 Ma)開始侵蝕形成水道復(fù)合體Ⅰ;之后在三級(jí)層序T3界面(約5.5 Ma)第二次強(qiáng)烈重力流向NE方向充溢偏移,并侵蝕形成水道復(fù)合體Ⅱ;第三次強(qiáng)烈重力流在次一級(jí)層序T2'界面(約4.2 Ma)向WS方向偏移,與水道復(fù)合體Ⅱ問存在平行、連續(xù)、弱反射分隔層,水道復(fù)合體Ⅱ被廢棄,流體侵蝕形成Ⅲ;三級(jí)層序T2界面(約2.6 Ma)以上水道復(fù)合體Ⅳ、Ⅴ的發(fā)育與水道復(fù)合體Ⅰ、Ⅱ、Ⅲ類似,水道復(fù)合體Ⅳ、Ⅴ也受到弱反射層分隔,相比之下,水道復(fù)合體Ⅳ、Ⅴ內(nèi)侵蝕水道規(guī)模遠(yuǎn)小于水道復(fù)合體Ⅰ、Ⅱ、Ⅲ,推測(cè)與2.6 Ma(T2界面)、1.9 Ma的重力流強(qiáng)度減弱有關(guān)(圖4)。
圖3 西北次海盆內(nèi)扇體基本單元(剖面位置見圖1b)Fig.3 Basic sedimentary units of the deepwater fan in the Northwestern Sub-basin(location of profile is shown in Fig.1b)
圖4 西北次海盆內(nèi)深水扇上扇水道充溢改道(剖面位置見圖1b)Fig.4 Channel avulsion on the upper deepwater fan in the Northwestern Sub-basin(location of profile is shown in Fig.1b)
五期充溢侵蝕不僅對(duì)應(yīng)著全球海平面的快速下降期,而且與瓊東南中央峽谷—水道的侵蝕期次[36,39,40]也具有較好的對(duì)應(yīng)關(guān)系。層序地層分析表明,全球海平面在10.5 Ma、5.5 Ma、4.2 Ma、2.6 Ma以及1.9 Ma存在顯著下降(圖1c),與此同時(shí)瓊東南中央峽谷—水道也存在 10.5 Ma、5.5 Ma、4.2 Ma、2.6 Ma四期明顯下切侵蝕[36,39~42,59],瓊東南中央水道東段出口即為西北次海盆,海盆內(nèi)也在10.5 Ma、5.5 Ma、4.2 Ma、2.6 Ma以及 1.9 Ma 分別發(fā)育深水扇。時(shí)間—空間耦合為西北次海盆內(nèi)深水扇系統(tǒng)的期次劃分提供了依據(jù)(圖4)。
2.2.2 扇體的空間疊置
上扇部位的限制性水道充溢改道可直接導(dǎo)致中或下扇扇體的側(cè)向遷移、擺動(dòng),其側(cè)向遷移距離可達(dá)幾十或上百公里[3,58]。本區(qū)深水扇中扇部位就存在明顯的扇體的空間相互疊置現(xiàn)象,遷移方向、疊置規(guī)律均與上扇水道充溢方向基本吻合(圖4、圖5);不同的是,中扇部位各期次級(jí)扇體內(nèi)水道分支明顯增多,復(fù)合水道寬度顯著增加(部分可達(dá)10 km)、厚度降低,復(fù)合水道內(nèi)部仍然存在明顯的水道側(cè)向擺動(dòng)遷移(圖5)。
西北次海盆內(nèi)深水扇系統(tǒng)的主要物源供給通道為瓊東南中央峽谷—水道[34,36,38,40,60],匯聚了來自于紅河、北側(cè)陸架—陸坡、中—西沙隆起區(qū)的沉積物。在時(shí)空上可基本推斷為:晚中新世(10.5~5.5 Ma)以北部陸架—陸坡物源為主導(dǎo),上新世(5.5 Ma、4.2 Ma)以北部陸架—陸坡和紅河物源為主導(dǎo),第四紀(jì)則以北部陸架—陸坡、中—西沙隆起區(qū)氣候作用下物源為主。
圖5 西北次海盆內(nèi)深水扇中扇扇體空間疊置(剖面位置見圖1b)Fig.5 Suprafan region of the middle deepwater fan in the Northwestern Sub-basin(location of profile is shown in Fig.1b)
在南海擴(kuò)張背景下,10.5 Ma左右鶯—瓊盆地邊緣陸架坡折基本形成,造成了整個(gè)鶯—瓊盆地整體呈現(xiàn)向東喇叭狀開口地形格局[56]。在此過程中西沙海槽盆地(長(zhǎng)昌凹陷)進(jìn)入加速沉降期[53],盆地內(nèi)先存斷裂的繼承性活動(dòng)形成瓊東南中央峽谷—水道的東段[36]。伴隨海平面大規(guī)模下降,重力流首先垂直于水道軸線側(cè)向侵蝕北側(cè)陸架—陸坡[59],沉積物到達(dá)東段水道底部后則平行于水道軸部繼續(xù)向東侵蝕,將大量沉積物輸送至西北次海盆,其北部陸坡區(qū)T4(10.5 Ma)界面上下振幅差異明顯,具有明顯侵蝕特征(圖6);5.5 Ma左右,隨著陸坡向西上溯及紅河斷裂的右旋走滑達(dá)到高峰[61,62],中央峽谷—水道向西遷移并東西連通,對(duì)峽谷—水道的鉆井證實(shí)紅河物源開始沿中央水道軸部向東侵蝕并最終進(jìn)入西北次海盆[38,42],北部陸架—陸坡物源自 T3(5.5 Ma)界面也以大規(guī)模滑塌或塊體流形式垂直于水道軸線側(cè)向進(jìn)入中央水道,之后轉(zhuǎn)變方向平行于水道軸線向東為深水扇系統(tǒng)做出物源貢獻(xiàn)(圖6)。4.2 Ma存在海平面明顯下降(圖1c),再次促進(jìn)了紅河物源向西北次海盆的供給;3.6 Ma之后海平面回升,對(duì)中央峽谷—水道的鉆井揭示紅河物源逐漸削弱[38,40]。更新世以來在約2.6 Ma、1.9 Ma全球海平面波動(dòng),并聯(lián)合氣候作用,陸架區(qū)及中—西沙隆起區(qū)沉積物以滑塌形式側(cè)向進(jìn)入中央峽谷—水道,受到阻擋后平行于水道軸線向深水扇系統(tǒng)輸送沉積物(圖6)。瓊東南與珠江口盆地陸架邊緣三角洲顯著的前積以及位于陸坡坡腳附近的ODP1148站約2.6 Ma、1.9 Ma沉積速率劇烈波動(dòng)都預(yù)示了陸架區(qū)沉積物供給加強(qiáng)[50,57]。
圖6 深水扇系統(tǒng)物源供給系統(tǒng)分析(剖面位置見圖1b)Fig.6 Provenance system of deepwater fan system in the Northwestern Sub-basin(location of profile is shown in Fig.1b)
由于研究區(qū)缺乏可靠的鉆井資料,關(guān)于物源的推斷是否與紅河物源區(qū)(包括中南半島)的物質(zhì)供應(yīng)、早期物源供應(yīng)是否與西沙海槽—瓊東南中央水道的沉降歷史有關(guān)、以及與海平面變化之間的關(guān)系等,有待進(jìn)一步工作。
目前對(duì)深水沉積體系的發(fā)育及空間展布控制因素研究較多[1,2,15,21,27],可歸納為物源屬性和古地形兩大主控因素。其中,物源屬性包括沉積物供給濃度、粒度、速度等,地形則主要體現(xiàn)在與構(gòu)造相關(guān)的空間限制性、坡度等。
如上所述,物源供應(yīng)上呈現(xiàn)先強(qiáng)后弱的特點(diǎn),即晚中新世較強(qiáng)、上新世最強(qiáng)、第四紀(jì)最弱。與之對(duì)應(yīng),上新世存在紅河及北部陸架—陸坡多重充足物源供給,水道侵蝕顯著(圖6),扇體規(guī)模最大,為本區(qū)深水扇系統(tǒng)發(fā)育的壯年期;第四紀(jì)扇體規(guī)模最小,空間上逐漸向西沙海槽內(nèi)后退萎縮,標(biāo)志著本區(qū)深水扇整體進(jìn)入老年期(圖1b、圖8)。
西北次海盆內(nèi)5期深水扇的空間展布受到先存地形的控制。在上扇區(qū),地形坡度較大,流體動(dòng)力強(qiáng),水道充溢頻率較高,造成水道的多期廢棄與侵蝕改道(圖4);在中扇區(qū),地形限制性削弱開始大規(guī)模扇體疊置,但依據(jù)南海擴(kuò)張時(shí)期形成的雙峰海山,扇體空間展布可基本劃分為南北兩部分,其中以深水扇Ⅰ、Ⅱ、Ⅳ位于雙峰海山以北,深水扇Ⅲ則基本位于雙峰海山以南(圖1b、圖7),深水扇III的向南發(fā)育一方面受到早期扇體沉積后的地形限制,另一方面推測(cè)與雙峰海山以南在上新世發(fā)生沉降有關(guān)。
此外,南海北部“三段式”陸坡地形影響了整個(gè)南海北部深水扇的發(fā)育。南海北部、西部陸坡存在明顯的上、中、下“三段式”結(jié)構(gòu),整體上“寬而緩”,珠江深水扇、紅河海底扇主要發(fā)育中陸坡,珠江深水扇所在的中陸坡可長(zhǎng)達(dá)80~100 km,紅河深水扇所在中陸坡長(zhǎng)達(dá)250 km以上;而與之相對(duì),孟加拉灣陸坡“窄而陡”,且不發(fā)育明顯的中陸坡(圖8)。
南海北部、西部中陸坡的發(fā)育一方面減緩了陸坡坡度,削弱了流體動(dòng)力,另一方面中陸坡斷陷發(fā)育,對(duì)沉積物進(jìn)一步向下陸坡運(yùn)移存在一定阻礙。在南海北部、西部中陸坡還發(fā)育一些列NEE向斷陷,其中北部NEE向斷陷與珠江近SN向的物源相垂直,自21 Ma垂直白云凹陷軸向發(fā)育的珠江深水扇系統(tǒng)表現(xiàn)出明顯的線型物源特征,在10.5 Ma之后珠江口盆地海平面變化幅度不足導(dǎo)致珠江物源的削弱(僅在第四紀(jì)再次加強(qiáng)),以及白云凹陷中新世以來的快速沉降,不利于大量沉積物穿越整個(gè)北部陸坡進(jìn)入到西北次海盆;相反,西北部NNE斷陷與紅河SE向物源近于平行,且在10.5 Ma以來的物源供給加強(qiáng)、坳陷沉降導(dǎo)致NEE向斷層的活化,共同促進(jìn)了瓊東南中央峽谷—水道發(fā)育并貫穿過上百千米的陸坡進(jìn)入到深海平原,沉積形成西北次海盆深水扇系統(tǒng)。
圖7 雙峰海山對(duì)深水扇系統(tǒng)的分隔作用(剖面位置見圖1b)Fig.7 The deep-water fan system is divided by the Shuangfeng seamount(location of profile is shown in Fig.1b)
圖8 (A)南海北部“三段式”陸坡地震剖面(剖面位置見圖1a-B),(B)孟加拉灣陸坡地震剖面[63]Fig.8 (A)Seismic profile across the northern"Three step"continental slope of South China Sea(location of profile is shown in Fig.1a-B),(B)Seismic profile across the continental slope of Bengal Bay[63]
在“三段式”陸坡背景下,可將西北次海盆內(nèi)深水扇系統(tǒng)發(fā)育模式歸納如下:10.5 Ma左右位于“中—下陸坡”附近的西沙海槽內(nèi)近NEE向斷裂活動(dòng)加強(qiáng)以及全球海平面下降,北側(cè)陸架—陸坡遭受侵蝕,沉積物經(jīng)過瓊東南中央峽谷—水道東段向西北次海盆輸入,并沉積形成深水扇Ⅰ,扇體進(jìn)入盆地后受到雙峰海山和北部陸坡的圍限,深水扇Ⅰ略向北部偏移,與此同時(shí)位于“上—中陸坡”的紅河海底扇開始發(fā)育(圖1b、圖9);5.5 Ma左右瓊東南中央峽谷—水道東西連通,橫切整個(gè)南海西北部陸坡,紅河物源、北部陸架—陸坡物源經(jīng)中央峽谷—水道輸入到西北次海盆(圖9),陸坡坡腳較強(qiáng)的流體動(dòng)力促使水道的沖溢改遷(圖4),受到早期扇體和雙峰海山的限制,在雙峰海山與北部陸坡之間沉積形成深水扇Ⅱ(圖1b);4.2 Ma海平面下降,中央峽谷—水道仍貫穿整個(gè)南海西北部陸坡,紅河物源、北部陸架—陸坡物源再次經(jīng)中央峽谷—水道向西北次海盆輸送,水道向南沖溢決口,從而在雙峰海山以南沉積形成深水扇Ⅲ(圖1b、圖9);4.2 Ma之后伴隨海平面的回升,上陸坡紅河物源逐漸消亡;2.6 Ma、1.9 Ma存在海平面下降,位于中—下陸坡北側(cè)陸架—陸坡發(fā)育大量滑塌體或塊體流,沉積物進(jìn)入中央峽谷—水道后受到阻擋并對(duì)峽谷—水道底部形成侵蝕,沉積物繼續(xù)向西北次海盆輸送形成深水扇Ⅳ、Ⅴ(圖1b、圖9)。在多物源充足供給下,深水扇Ⅱ、Ⅲ空間展布范圍巨大(圖11b、圖9);第四紀(jì)紅河物源逐漸消亡且海平面整體回升,中—下陸坡附近陸架、中—西沙隆起區(qū)物源供給能力有所削弱,深水扇Ⅳ、Ⅴ逐漸向西沙海槽內(nèi)后退萎縮(圖1b、圖9)。
通過對(duì)二維地震反射界面和結(jié)構(gòu)的詳細(xì)分析,揭示南海西北次海盆內(nèi)自上中新世(約10.5 Ma)開始發(fā)育規(guī)模巨大的深水扇系統(tǒng),覆蓋面積達(dá)18 000 km2。扇體表現(xiàn)出整體的強(qiáng)振幅反射特征,剖面上呈透鏡狀,邊緣具有下超或上超特征。深水扇系統(tǒng)上扇為限制性水道復(fù)合體發(fā)育區(qū),內(nèi)部水道多次充溢改道;中扇為扇體疊置區(qū),內(nèi)部以水道—堤壩沉積為主;下扇則以水道—朵體沉積為主。
瓊東南中央峽谷—水道為本區(qū)深水扇系統(tǒng)的主要物源通道。根據(jù)地震反射結(jié)構(gòu)和層序界面以及瓊東南中央峽谷—水道的侵蝕期次,可將深水扇系統(tǒng)內(nèi)部劃分為5期:晚中新世一期(深水扇Ⅰ/10.5 Ma)、上新世兩期(深水扇Ⅱ/5.5 Ma、Ⅲ/4.2 Ma)、第四紀(jì)兩期(深水扇Ⅳ/2.6 Ma、Ⅴ/1.9 Ma)。在上、中、下“三段式”陸坡背景下,晚中新世以中—下陸坡北側(cè)物源為主導(dǎo),上新世以上陸坡紅河物源為主導(dǎo),第四紀(jì)則以中—下陸坡北側(cè)陸架—陸坡、中—西沙隆起區(qū)物源為主。本區(qū)深水扇系統(tǒng)被雙峰海山分為南北兩部分,其中深水扇Ⅰ、Ⅱ、Ⅳ位于雙峰海山以北,深水扇Ⅲ則基本位于雙峰海山以南。各個(gè)深水扇之間存在明顯的側(cè)向上疊遷移特征。本區(qū)深水扇系統(tǒng)的發(fā)現(xiàn)將為南海北部深水區(qū)提供新的油氣勘探領(lǐng)域和勘探目標(biāo)。
圖9 西北次海盆深水扇系統(tǒng)演化模式圖(剖面位置見圖1a-A)Fig.9 Model showing evolution of the deepwater fan system in the Northwestern Sub-basin(location of profile is shown in Fig.1a-A)
References)
1 Shanmugam G.50 years of the turbidite paradigm(1950s-1990s):deep-water processes and facies models:a critical perspective[J].Marine and Petroleum Geology,2000,17(2):285-342
2 Stow D A V,Johansson M.Deep-water massive sands:nature,origin and hydrocarbon implications[J].Marine and Petroleum Geology,2000,17(2):145-174
3 Lopez M.Architecture and depositional pattern of the Quaternary deepsea fan of the Amazon[J].Marine and Petroleum Geology,2001,18(4):479-486
4 Shanmugam G.Deep-water Processes and Facies Models:Implications for Sandstone Petroleum Reservoirs[M].Elsevier Science,2006
5 龐雄,彭大鈞,陳長(zhǎng)民,等.三級(jí)“源-渠-匯”耦合研究珠江深水扇系統(tǒng)[J].地質(zhì)學(xué)報(bào),2007,81(6):857-864[Pang Xiong,Peng Dajun,Chen Changmin,et al.Three hierarchies“Source-Conduit-Sink”coupling analysis of the Pearl River deep-water fan system[J].Acta Geologica Sinica,2007,81(6):857-864]
6 李云,鄭榮才,高博禹,等.深水扇沉積研究現(xiàn)狀和展望——以珠江口盆地白云凹陷珠江深水扇系統(tǒng)為例[J].地質(zhì)論評(píng),2010,56(4):549-560[Li Yun,Zheng Rongcai,Gao Boyu,et al.Reviews and prospects on submarine fan deposition:A case study of Zhujiang submarine fan system in Baiyun depression,Pearl River Mouth Basin[J].Geological Review,2010,56(4):549-560]
7 Walker R G.Deep-water sandstone facies and ancient submarine fans:models for exploration for stratigraphic traps[J].AAPG Bulletin,1978,62(6):932-966
8 Mitchum Jr R M,Vail P,Thompson III S.Seismic stratigraphy and global changes of sea level,part 2:the depositional sequence as a basic unit for stratigraphic analysis[C]∥Payton E C,ed.Seismic stratigraphy--applications to hydrocarbon exploration.AAPG Memoir,1977:53-62
9 Mitchum Jr R M.Seismic stratigraphic expression of submarine fans[M].AAPG Memoir,1985,39:117-136
10 Nilsen T H.Modern and ancient submarine fans:discussion of papers by R G Walker and W R Normark[J].AAPG Bulletin,1980,64(7):1094-1101
11 Bastia R,Das S,Radhakrishna M.Pre-and post-collisional depositional history in the upper and middle Bengal fan and evaluation of deepwater reservoir potential along the northeast continental margin of India[J].Marine and Petroleum Geology,2010,27(9):2051-2061
12 Reading H G,Richards M.Turbidite systems in deep-water basin margins classified by grain-size and feeder system[J].AAPG Bulletin,1994,78(5):792-822
13 Deptuck M E,Steffens G S,Barton M,et al.Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the A-rabian Sea[J].Marine and Petroleum Geology,2003,20(6-8):649-676
14 Wynn R B,Cronin B T,Peakall J.Sinuous deep-water channels:Genesis,geometry and architecture[J].Marine and Petroleum Geology,2007,24(6-9):341-387
15 Kolla V.A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them[J].Marine and Petroleum Geology,2007,24(6-9):450-469
16 Kolla V,Posamentier H W,Wood L J.Deep-water and fluvial sinuous channels:Characteristics,similarities and dissimilarities,and modes of formation[J].Marine and Petroleum Geology,2007,24(6-9):388-405
17 Beaubouef R T.Deep-water leveed-channel complexes of the Cerro Toro Formation,Upper Cretaceous,southern Chile[J].AAPG Bulletin,2004,88(11):1471-1500
18 Hubbard S M,de Ruig M J,Graham S A.Confined channel-levee complex development in an elongate depocenter:Deep-water Tertiary strata of the Austrian Molasse basin[J].Marine and Petroleum Geology,2009,26(1):85-112
19 McHargue T,Pyrcz M J,Sullivan M D,et al.Architecture of turbidite channel systems on the continental slope:Patterns and predictions[J].Marine and Petroleum Geology,2011,28(3):728-743
20 Wynn R B,Kenyon N H,Masson D G,et al.Characterization and recognition of deep-water channel-lobe transition zones[J].AAPG Bulletin,2002,86(8):1441-1462
21 Gervais A,Savoye B,Mulder T,et al.Sandy modern turbidite lobes:A new insight from high resolution seismic data[J].Marine and Petroleum Geology,2006,23(4):485-502
22 Jegou I,Savoye B,Pirmez C,et al.Channel-mouth lobe complex of the recent Amazon Fan:The missing piece[J].Marine Geology,2008,252(1-2):62-77
23 Ito M.Downfan transformation from turbidity currents to debris flows at a channel-to-lobe transitional zone:The Lower Pleistocene Otadai Formation,Boso Peninsula,Japan[J].Journal of Sedimentary Research,2008,78(10):668-682
24 Deptuck M E,Piper D J W,Savoye B,et al.Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica[J].Sedimentology,2008,55(4):869-898
25 Bourget J,Zaragosi S,Mulder T,et al.Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes:A case study from the Al Batha turbidite system,Oman margin[J].Sedimentary Geology,2010,229(3):144-159
26 Mulder T,Etienne S.Lobes in deep-sea turbidite systems:state of the art preface[J].Sedimentary Geology,2010,229(3):75-80
27 Deptuck M E,Sylvester Z,Pirmez C,et al.Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon,western Niger Delta slope[J].Marine and Petroleum Geology,2007,24(6-9):406-433
28 李存磊,任偉偉,唐明明.流體性質(zhì)轉(zhuǎn)換機(jī)制在重力流沉積體系分析中應(yīng)用初探[J].地質(zhì)論評(píng),2012,58(2):285-296[Li Cunlei,Reng Weiwei,Tang Mingming.Preliminary study on gravity flow depositional system based on fluid properties conversion theory[J].Geological Review,2012,58(2):285-296]
29 高紅燦,鄭榮才,魏欽廉,等.碎屑流與濁流的流體性質(zhì)及沉積特征研究進(jìn)展[J].地球科學(xué)進(jìn)展,2012,27(8):815-827[Gao Hongcan,Zheng Rongcai,Wei Qinlian,et al.Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents[J].Advance in Earth Sciences,2012,27(8):815-827]
30 彭大鈞,陳長(zhǎng)民,龐雄,等.南海珠江口盆地深水扇系統(tǒng)的發(fā)現(xiàn)[J].石油學(xué)報(bào),2004,25(5):17-23[Peng Dajun,Chen Changmin,Pang Xiong,et al.Discovery of deep-water fan system in South China Sea[J].Acta Petrolei Sincia,2004,25(5):17-23]
31 彭大鈞,龐雄,黃先律,等.南海珠江深水扇系統(tǒng)的形成模式[J].石油學(xué)報(bào),2007,28(5):7-11[Peng Dajun,Pang Xiong,Huang Xianlü,et al.Depositional model of Pearl River deep-water fan system in South China Sea[J].Acta Petrolei Sinica,2007,28(5):7-11]
32 Wang Y F,Wang Y M,Xu Q,et al.The early-middle Miocene submarine fan system in the Pearl River Mouth Basin,South China Sea[J].Petroleum Science,2012,9(1):1-9
33 Wang Y,Xu Q,Li D,et al.Late Miocene Red River submarine fan,northwestern South China Sea[J].Chinese Science Bulletin,2011,56(14):1488-1494
34 Yuan S,Lü F,Wu S,et al.Seismic stratigraphy of the Qiongdongnan deep sea channel system,northwest South China Sea[J].Chinese Journal of Oceanology and Limnology,2009,27(2):250-259
35 Curray J R,Emmel F J,Moore D G.The Bengal Fan:morphology,geometry,stratigraphy,history and processes[J].Marine and Petroleum Geology,2002,19(10):1191-1223
36 蘇明,李俊良,姜濤,等.瓊東南盆地中央峽谷的形態(tài)及成因[J].海洋地質(zhì)與第四紀(jì)地質(zhì),2009,29(4):85-93[Su Ming,Li Junliang,Jiang Tao,et al.Morphological features and formation mechanism of central canyon in the Qiongdongnan basin,Northern South China Sea[J].Marine Geology & Quaternary Geology,2009,29(4):85-93]
37 袁圣強(qiáng),曹鋒,吳時(shí)國,等.南海北部陸坡深水曲流水道的識(shí)別及成因[J].沉積學(xué)報(bào),2010,28(1):68-74[Yuan Shenqiang,Cao Feng,Wu Shiguo,et al.Architecture and origin of deepwater sinuous channel on the Slope of Northern South China Sea[J].Acta Sedimentologica Sinica,2010,28(1):68-74]
38 許懷智,蔡?hào)|升,孫志鵬,等.瓊東南盆地中央峽谷沉積充填特征及油氣地質(zhì)意義[J].地質(zhì)學(xué)報(bào),2012,86(4):641-650[Xu Huaizhi,Cai Dongshen,Sun Zhipeng,et al.Filling characters of central submarine canyon of Qiongdongnan basin and its significance of petroleum geology[J].Acta Geologica Sinica,2012,86(4):641-650]
39 王振峰.深水重要油氣儲(chǔ)層——瓊東南盆地中央峽谷體系[J].沉積學(xué)報(bào),2012,30(4):646-653[Wang Zhengfeng.Important deepwater hydrocarbon reservoirs:the central canyon system in the Qiongdongnan basin[J].Acta Sedimentologica Sinica,2012,30(4):646-653]
40 李冬,王英民,王永鳳,等.瓊東南盆地中央峽谷深水天然堤-溢岸沉積[J].沉積學(xué)報(bào),2011,29(4):689-694[Li Dong,Wang Yingmin,Wang Yongfeng,et al.The sedimentary and foreground of prospect for levee-overbank in central canyon,Qiongdongnan basin[J].Acta Sedimentologica Sinica,2011,29(4):689-694]
41 林暢松,劉景彥,蔡世祥,等.鶯-瓊盆地大型下切谷和海底重力流體系的沉積構(gòu)成和發(fā)育背景[J].科學(xué)通報(bào),2001,46(1):69-72[Lin Changsong,Liu Jingyan,Cai Shixiang,et al.The large scale incision valley,seafloor gravity flow system and it's develop setting in Yinggehai and Qiongdongnan Basin[J].Chinese Science Bulletin,2001,46(1):69-72]
42 Gong C,Wang Y,Zhu W,et al.The central submarine canyon in the Qiongdongnan Basin,northwestern South China Sea:architecture,sequence stratigraphy,and depositional processes[J].Marine and Petroleum Geology,2011,28(9):1690-1702
43 Cullen A,Reemst P,Henstra G,et al.Rifting of the South China Sea:new perspectives[J].Petroleum Geoscience,2010,16(3):273-282
44 Li C F,Zhou Z,Li J,et al.Structures of the northeasternmost South China Sea continental margin and ocean basin:geophysical constraints and tectonic implications[J].Marine Geophysical Researches,2007,28(1):59-79
45 周蒂,陳漢宗,吳世敏,等.南海的右行陸緣裂解成因[J].地質(zhì)學(xué)報(bào),2002,76(2):180-190[Zhou Di,Chen Hanzong,Wu Shimin,et al.Opening of the South China Sea by dextral splitting of the east Asian continental margin[J].Acta Geologica Sinica,2002,76(2):180-190]
46 欒錫武,張亮.南海構(gòu)造演化模式:綜合作用下的被動(dòng)擴(kuò)張[J].海洋地質(zhì)與第四紀(jì)地質(zhì),2009,29(6):59-74[Luan Xiwu,Zhang Liang.Tectonic evolution modes of South China Sea:passive spreading under complex actions[J].Marine Geology & Quaternary Geology,2009,29(6):59-74]
47 吳振利,李家彪,阮愛國,等.南海西北次海盆地殼結(jié)構(gòu):海底廣角地震實(shí)驗(yàn)結(jié)果[J].中國科學(xué):地球科學(xué),2011,41(10):1463-1476[Wu Zhengli,Li Jiabiao,Ruan Aiguo,et al.Crustal structure of the northwestern sub-basin,South China Sea:results from a wideangle seismic experiment[J].Science in China:Earth Sciences,2011,41(10):1463-1476]
48 丁巍偉,黎明碧,趙俐紅,等.南海西北次海盆新生代構(gòu)造-沉積特征及伸展模式探討[J].地學(xué)前緣,2009,16(4):147-156[Ding Weiwei,Li Mingbi,Zhao Lihong,et al.Cenozoic tectono-sedimentary characteristics and extension model of the Northwest Sub-basin,South China Sea[J].Earth Science Frontiers,2009,16(4):147-156]
49 魏喜,祝永軍,陳亦寒,等.南海西北次海擴(kuò)張時(shí)代和洋殼性質(zhì):沉積地層及重磁依據(jù)[J].地質(zhì)學(xué)報(bào),2012,86(3):383-388[Wei Xi,Zhu Yongjun,Chen Yihan,et al.Ocean crust character and spreading age of Northwest Sub-sea,the South China Sea:evidence from sediment strata and the abnormity of gravity and magnetism[J].Acta Geologica Sinica,2012,86(3):383-388]
50 Xie X,Muller R D,Li S,et al.Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography[J].Marine and Petroleum Geology,2006,23(7):745-765
51 龐雄,陳長(zhǎng)民,邵磊,等.白云運(yùn)動(dòng):南海北部漸新統(tǒng)-中新統(tǒng)重大地質(zhì)事件及其意義[J].地質(zhì)論評(píng),2007,53(2):145-151[Pang Xiong,Chen Changmin,Shao Lei,et al.Baiyun movement,a great tectonic event on the Oligocene-Miocene boundary in the Northern South China Sea and its implications[J].Geological Review,2007,53(2):145-151]
52 Li Q Y,Han Z M,Su X.Late Oligocene rapid transformations in the South China Sea[J].Marine Micropaleontology,2005,54(1-2):5-25
53 廖計(jì)華,王華,孫志鵬,等.瓊東南盆地深水區(qū)長(zhǎng)昌凹陷構(gòu)造演化及其對(duì)層序樣式的控制[J].中南大學(xué)學(xué)報(bào):自然科學(xué)版,2012,43(8):3121-3132[Liao Jihua,Wang Hua,Sun Zhipeng,et al.Tectonic evolution and its controlling on sequence pattern of Chang-chang sag,deepwater area of Qiongdongnan basin,South China Sea[J].Journal of Central South University:Science and Technology,2012,43(8):3121-3132]
54 袁玉松,丁玫瑰.南海北部深水區(qū)盆地特征及其動(dòng)力學(xué)背景[J].海洋科學(xué),2008,32(12):102-110[Yuan Yusong,Ding Meigui.Characteristics and geodynamic setting of the basins in deepwater area of the Northern South China Sea margin[J].Marine Sciences,2008,32(12):102-110]
55 袁玉松,楊樹春,胡圣標(biāo),等.瓊東南盆地構(gòu)造沉降史及其主控因素[J].地球物理學(xué)報(bào),2008,51(2):376-383[Yuan Yusong,Yang Shuchun,Hu Shenbiao,et al.Tectonic subsidence of Qiongdongnan Basin and its main control factors[J].Chinese Journal of Geophysics,2008,51(2):376-383]
56 解習(xí)農(nóng),陳志宏,孫志鵬,等.南海西北陸緣深水沉積體系內(nèi)部構(gòu)成特征[J].地球科學(xué)-中國地質(zhì)大學(xué)學(xué)報(bào),2012,37(4):627-634[Xie Xinong,Chen Zhihong,Sun Zhipeng,et al.Depositional architecture characteristics of deepwater depositional systems on the continental margins of northwestern South China Sea[J].Earth Science-Journal of China University of Geosciences,2012,37(4):627-634]
57 邵磊,李獻(xiàn)華,汪品先,等.南海漸新世以來構(gòu)造演化的沉積記錄--ODP1148站深海沉積物中的證據(jù)[J].地球科學(xué)進(jìn)展,2004,19(4):539-544[Shao Lei,Li Xianhua,Wang Pingxian,et al.Sedimentary record of the tectionic evolution of the South China Sea since the Oligocene:Evidence from deep sea sediments of ODP Site 1148[J].Advances in Earth Science,2004,19(4):539-544]
58 Flood R D,Manley P L,Kowsmann R O,et al.Seismic facies and late Quaternary growth of Amazon submarine fan[M]∥Weimer M H,ed.Seismic Facies and Sedimentary Processes of Modern and Ancient Submarine Fans.New York:Springer,1991:415-433
59 He Y,Xie X,Kneller B C,et al.Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin,northern South China Sea[J].Marine and Petroleum Geology,2012,doi:10.1016/j.marpetgeo.2012.03.002
60 袁圣強(qiáng),吳時(shí)國,趙宗舉,等.南海北部陸坡深水區(qū)沉積物輸送模式探討[J].海洋地質(zhì)與第四紀(jì)地質(zhì),2010,30(4):39-48[Yuan Shengqiang,Wu Shiguo,Zhao Zongju,et al.Deepwater sediment transportation models for Northern South China sea slopes[J].Marine Geology & Quaternary Geology,2010,30(4):39-48]
61 詹文歡,丘學(xué)林,孫宗勛,等.紅河活動(dòng)斷裂帶在南海西北部的反映[J].熱帶海洋學(xué)報(bào),2003,22(2):10-16[Zhan Wenhuan,Qiu Xuelin,Sun Zongxun,et al.Red river active fault zone in northwestern South China sea[J].Tropic Oceanology,2003,22(2):10-16]
62 向宏發(fā),萬景林,韓竹軍,等.紅河斷裂帶大型右旋走滑運(yùn)動(dòng)發(fā)生時(shí)代的地質(zhì)分析與FT測(cè)年[J].中國科學(xué):地球科學(xué),2006,36(11):977-987[Xiang Hongfa,Wan Jinlin,Han Zhujun,et al.Geological analysis and FT dating of the large scale right lateral strikeslip movement of the Red River fault zone[J].Science in China:Earth Sciences,2006,36(11):977-987]
63 Radhakrishna M,Twinkle D,Nayak S,et al.Crustal structure and rift architecture across the Krishna-Godavari Basin in the central eastern continental margin of India based on analysis of gravity and seismic data[J].Marine and Petroleum Geology,2012,37:129-147