摘 要:逆向思維是創(chuàng)造性思維的一個(gè)組成部分,也是進(jìn)行思維訓(xùn)練的載體,培養(yǎng)學(xué)生逆向思維過程也是培養(yǎng)學(xué)生思維敏捷性、拓展學(xué)生思維視野的過程。
關(guān)鍵詞:逆向思維;數(shù)學(xué)教學(xué);數(shù)學(xué)思維
逆向思維是數(shù)學(xué)思維的一個(gè)重要形式,是創(chuàng)造性思維的一個(gè)組成部分,也是進(jìn)行思維訓(xùn)練的載體,培養(yǎng)學(xué)生逆向思維過程是培養(yǎng)學(xué)生思維敏捷性的過程,拓展學(xué)生思維視野的過程。本人在多年教學(xué)實(shí)踐中注重以下幾個(gè)方面的嘗試,獲得了一定的成效。
一、在概念教學(xué)中注意培養(yǎng)反方向的思考與訓(xùn)練
數(shù)學(xué)概念、定義總是雙向的,我們在平時(shí)的教學(xué)中,只秉承了從左到右的運(yùn)用,于是形成了定向思維,對于逆用公式法則等很不習(xí)慣。因此在概念的教學(xué)中,除了讓學(xué)生理解概念本身及其常規(guī)的應(yīng)用外,還要善于引導(dǎo)啟發(fā)學(xué)生反過來思考,從而加深對概念的理解與拓展。例如,解|x+1|+|x+2|>4這個(gè)不等式,解:在數(shù)軸上標(biāo)出-1,-2這兩個(gè)點(diǎn)。(并分為三個(gè)區(qū)域:即x小于等于-2,x大于-2且小于-1,x大于等于-1注意要做到不重不漏!)從絕對值概念的反向考慮其條件,所以(1)當(dāng)x≤-2時(shí),(x+1為負(fù),所以取相反數(shù),x+2也一樣)。-(x+1)-(x+2)>4解得x<-3.5,又因?yàn)閤≤-2(前提條件)所以x<-3.5。(2)當(dāng)-2
∴∠A、∠B互為補(bǔ)角(正向思維)?!摺螦、∠B互為補(bǔ)角?!唷螦+∠B=180°(逆向思維)。當(dāng)然,在平常的教學(xué)中,教師本身應(yīng)明確哪些定理的逆命題是真命題,才能適時(shí)給學(xué)生以訓(xùn)練。
二、重視公式逆用的教學(xué)
公式從左到右及從右到左,這樣的轉(zhuǎn)換正是由正向思維轉(zhuǎn)到逆向思維能力的體現(xiàn)。在教學(xué)中,注重這方面的訓(xùn)練,不僅能使學(xué)生思維活躍,拓寬思維,有益于學(xué)生思維能力的培養(yǎng)和提高。因此,當(dāng)講授完一個(gè)公式及其應(yīng)用后,緊接著舉一些公式的逆應(yīng)用的例子,可以給學(xué)生一個(gè)完整、豐滿的印象,開闊思維空間。在代數(shù)中公式的逆向應(yīng)用比比皆是。多項(xiàng)式的乘法公式的逆用,用于因式分解、同底數(shù)冪的運(yùn)算法則的逆用可輕而易舉地幫助我們解答一些問題,如,若有關(guān)x的方程3x2-5x+a=0的一個(gè)根在(-2,0)內(nèi),另一個(gè)在(1,3)內(nèi),則a的取值范圍是不用解答呢?比如這類題目的解決思想是什么?
首先,逆向思維因?yàn)橛袃蓚€(gè)根,所以判別式大于零。因?yàn)槎雾?xiàng)系數(shù)大于0,開口向上。
令f(x)=3x2-5x+a,則f(-2)>0,f(0)<0,f(1)<0,f(3)>0