美國麻省理工學(xué)院(MIT)電子研究實驗室(RLE)、哈佛大學(xué)以及奧地利維也納技術(shù)大學(xué)的科學(xué)家們最近研制出了一種由單個光子控制的全光開關(guān),新的全光晶體管有望讓傳統(tǒng)計算機和量子計算機都受益。
新的全光開關(guān)的核心是一對高度反光的鏡子。當(dāng)開關(guān)打開時,光信號能穿過這兩面鏡子,當(dāng)開關(guān)關(guān)閉時,信號中約20%的光能穿過鏡子。如此一來,這對鏡子就構(gòu)成了所謂的光學(xué)共振器。在ERL的實驗中,兩面鏡子間的空腔內(nèi)充滿了超冷的銫原子組成的氣體。一般情況下,銫原子與穿過鏡子的光“井水不犯河水”。但如果某個“門光子”以不同的角度射入兩面鏡子的中間,將一個原子的一個電子推入更高能態(tài),它就會改變空腔的物理特性,使光無法再通過空腔,令開關(guān)關(guān)閉。
隨著傳統(tǒng)計算機芯片上簇?fù)淼木w管越來越多,芯片的能耗與日俱增且變得更熱,這款全光晶體管或許可以解決這兩個問題。這款設(shè)備對量子計算機來說可能更有益處??茖W(xué)家們已經(jīng)使用激光捕獲離子和核磁共振制造出了原始的量子計算機,但很難讓量子比特保持疊加狀態(tài),而光子更容易保持疊加狀態(tài),科學(xué)家們可據(jù)此制造出一系列處于疊加狀態(tài)的光學(xué)電路。更重要的是,烏勒提表示,傳統(tǒng)晶體管可以將電信號內(nèi)的噪聲過濾掉,而量子反饋則能將量子噪聲抵消,因此,人們能制造出通過其他方法無法獲得的量子狀態(tài)。
這一開關(guān)也能用做目前還沒有的光探測器:如果光子撞上了原子,光無法通過空腔,這意味該設(shè)備可以在不破壞光子的情況下探測其蹤跡。
(欄目編輯:梁曉英)