国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

動(dòng)物離體結(jié)腸運(yùn)動(dòng)模式的研究

2014-03-06 19:03綜述陳繼紅審校
醫(yī)學(xué)綜述 2014年14期
關(guān)鍵詞:甲胺離體節(jié)律

張 倩(綜述),陳繼紅(審校)

(武漢大學(xué)人民醫(yī)院消化內(nèi)科,武漢 430060)

近段結(jié)腸吸收內(nèi)容物的水分、電解質(zhì)和營養(yǎng)物質(zhì)[1],遠(yuǎn)段結(jié)腸則負(fù)責(zé)糞便的存貯和排空。神經(jīng)系統(tǒng)、Cajal間質(zhì)細(xì)胞(interstitial cells of Cajal,ICC)和平滑肌細(xì)胞協(xié)同調(diào)控著結(jié)腸的運(yùn)動(dòng)模式。在體胃腸道的運(yùn)動(dòng)由中樞神經(jīng)、自主神經(jīng)和腸神經(jīng)共同支配[2]。去除外在神經(jīng)后,腸神經(jīng)系統(tǒng)(肌間神經(jīng)叢和黏膜下神經(jīng)叢)可獨(dú)立發(fā)揮作用。ICC與腸神經(jīng)系統(tǒng)密切相關(guān),根據(jù)分布部位和功能分為漿膜層ICC[3]、肌間神經(jīng)叢相關(guān)ICC(ICC associated with the myenteric plexus,ICC-MP)[4]、肌束纖維隔內(nèi)ICC[3]、肌層內(nèi)ICC[5]和黏膜下神經(jīng)叢相關(guān)ICC(ICC associated with the submuscular plexus,ICC-SMP)[6]。離體動(dòng)物結(jié)腸研究中,常用動(dòng)物為大鼠、小鼠,可分為傳播性推進(jìn)性運(yùn)動(dòng)和傳播性非推進(jìn)性運(yùn)動(dòng),前者節(jié)律性推進(jìn)性運(yùn)動(dòng)復(fù)合波(rhythmic propulsive motor complexes,RPMCs)多見,后者微小波多見。

1 推進(jìn)性運(yùn)動(dòng)

RPMCs[7]也被稱為結(jié)腸移行運(yùn)動(dòng)復(fù)合波[8]、巨大收縮[9]、袋狀收縮[9]或集團(tuán)蠕動(dòng)[9]。20世紀(jì)中期,人們在小鼠和貓的離體全結(jié)腸中首次發(fā)現(xiàn)RPMCs[10-11],隨后其他研究小組也陸續(xù)觀察到[12]。1995年,Taylor稱之為結(jié)腸移行運(yùn)動(dòng)復(fù)合波[13],命名類似小腸移行運(yùn)動(dòng)復(fù)合波。小腸移行運(yùn)動(dòng)復(fù)合波空腹時(shí)周期性出現(xiàn),膽堿能腸神經(jīng)可增強(qiáng)移行運(yùn)動(dòng)復(fù)合波,而氮能腸神經(jīng)抑制其活動(dòng)[14-15]。當(dāng)時(shí),研究者認(rèn)為RPMCs與小腸移行運(yùn)動(dòng)復(fù)合波一樣由腸神經(jīng)系統(tǒng)支配。但不同的是,RPMCs可自發(fā)產(chǎn)生,也可經(jīng)生理性刺激誘發(fā)[16]。隨后,一部分學(xué)者觀察到RPMCs可被河豚毒素阻斷,因此認(rèn)為RPMCs是一種節(jié)律性的、產(chǎn)生和傳播由腸神經(jīng)控制的神經(jīng)源性運(yùn)動(dòng);而另一部分學(xué)者發(fā)現(xiàn)RPMCs對河豚毒素并不敏感,是一種肌源性運(yùn)動(dòng)。還有部分研究者發(fā)現(xiàn)在體RPMCs同時(shí)具有神經(jīng)源性和肌源性特征,但離體RPMCs僅有神經(jīng)源性特征[17]。對此,Huizinga等[7]認(rèn)為RPMCs起自ICC,腸神經(jīng)系統(tǒng)則為ICC提供主要刺激。神經(jīng)傳導(dǎo)阻滯劑(河豚毒素、利多卡因)抑制近段結(jié)腸RPMCs[18],中段結(jié)腸RPMCs被阻斷但可被氯貝膽堿再次誘發(fā),證實(shí)生理情況下神經(jīng)系統(tǒng)參與RPMCs的產(chǎn)生。但移除黏膜和黏膜下神經(jīng)叢,自發(fā)性和外源性刺激(神經(jīng)電刺激、結(jié)腸擴(kuò)張)誘發(fā)的RPMCs仍可見[12,19-20],說明RPMCs的產(chǎn)生和傳播并非必需神經(jīng)遞質(zhì)介導(dǎo)。肌條研究得到類似結(jié)果[12,21]。

ICC-MP完整時(shí)才能觀察到RPMCs[17]。ICC-MP經(jīng)鈣離子觸發(fā)激活后,產(chǎn)生正向傳播的節(jié)律性一過性除極,其頻率和振幅取決于刺激源強(qiáng)度。鈣成像研究表明,在RPMCs間期,抑制性運(yùn)動(dòng)神經(jīng)元持續(xù)釋放神經(jīng)遞質(zhì)抑制ICC-MP,阻斷抑制性神經(jīng)后,ICC間出現(xiàn)持續(xù)性Ca2+電流。興奮性運(yùn)動(dòng)神經(jīng)元也可觸發(fā)ICC-MP的Ca2+電流[22]。ICC-MP和平滑肌細(xì)胞Ca2+電流增強(qiáng),經(jīng)興奮性神經(jīng)激活環(huán)形肌和縱行肌,參與RPMCs的產(chǎn)生和傳播。研究發(fā)現(xiàn)阿托品抑制ICC-MP,神經(jīng)激肽1拮抗劑隨之阻斷,反之亦然。表明膽堿能神經(jīng)和速激肽神經(jīng)參與ICC-MP的激活[22]??偠灾?,在各種內(nèi)、外刺激源作用下,興奮性運(yùn)動(dòng)神經(jīng)釋放乙酰膽堿和速激肽、抑制性運(yùn)動(dòng)神經(jīng)活動(dòng)減退,共同激活I(lǐng)CC網(wǎng)絡(luò)產(chǎn)生RPMCs。

2 傳播性非推進(jìn)性運(yùn)動(dòng)

目前研究最多的非推進(jìn)性運(yùn)動(dòng)是微小波。微小波是由ICC-SMP介導(dǎo)的高頻率、低振幅收縮,通常出現(xiàn)在結(jié)腸的頭段和中段[7-8,23]。微小波的速度、傳播方向和起始點(diǎn)千變?nèi)f化。電生理研究表明,微小波產(chǎn)生的基礎(chǔ)是ICC-SMP起源的慢波。由于慢波可以在任一時(shí)刻產(chǎn)生于ICC-SMP網(wǎng)絡(luò)上的任一點(diǎn),且可以任一速度雙向傳播,引起平滑肌細(xì)胞節(jié)律性除極產(chǎn)生微小波[23-24],因此微小波之間具有較大的差異性。但微小波起始時(shí)多為逆向傳播,方向常變,不能驅(qū)動(dòng)結(jié)腸推進(jìn)性運(yùn)動(dòng)[8]。其傳播距離短,僅推動(dòng)與黏膜表面接觸的內(nèi)容物,促進(jìn)水分吸收。全結(jié)腸研究和肌條研究均顯示微小波具有河豚毒素抵抗性,對其他神經(jīng)源性藥物(利多卡因)和肌源性藥物(氯貝膽堿)也無反應(yīng)[7,23],提示微小波僅具有肌源性性質(zhì)。微小波與RPMCs常同時(shí)出現(xiàn),但兩者的傳播方向不一定相同。ICC-SMP和ICC-MP是獨(dú)立的兩個(gè)網(wǎng)絡(luò),彼此之間沒有聯(lián)系,慢波和與節(jié)律性一過性除極相互獨(dú)立,可同時(shí)反向傳播,因此微小波和RPMCs也可同時(shí)反向傳播[23]。

3 兔離體結(jié)腸運(yùn)動(dòng)模式研究

由于解剖差異較大,兔與大鼠、小鼠的結(jié)腸運(yùn)動(dòng)模式略有不同。兔結(jié)腸分四部分[25],前三部分構(gòu)成近段結(jié)腸,第四部分為遠(yuǎn)段結(jié)腸:第一部分的三條結(jié)腸帶間形成結(jié)腸袋;第二部分僅有一條結(jié)腸帶和一側(cè)結(jié)腸袋;第三部分為腸鈕(fusus coli),縱行肌環(huán)繞其外,與遠(yuǎn)段結(jié)腸連接于結(jié)腸曲。

Roger用高分辨率時(shí)空圖觀察到第一部分離體兔結(jié)腸存在四種運(yùn)動(dòng)模式[9],①集團(tuán)蠕動(dòng):快速傳播的外層環(huán)形肌收縮,伴有結(jié)腸帶縱行肌不規(guī)則收縮,收縮前有預(yù)舒張,對六甲胺敏感,正向集團(tuán)蠕動(dòng)傳播距離較逆向集團(tuán)運(yùn)動(dòng)長,回腸內(nèi)容物推入時(shí)差別更顯著;②袋裝傳播:緩慢正向環(huán)行收縮,對六甲胺敏感;③微小波:逆向環(huán)形收縮,傳播速度差異大,對六甲胺抵抗;④快相收縮:快速正向傳播的低幅度收縮,對六甲胺抵抗。快相收縮與結(jié)腸帶縱行肌收縮同時(shí)增加集團(tuán)蠕動(dòng)前的收縮幅度。

Dinning等[8]觀察到神經(jīng)源性的RPMCs、正向和逆向蠕動(dòng)以及肌源性的微小波。結(jié)腸腔內(nèi)環(huán)境的改變(內(nèi)容物體積增加、黏度增高等)誘發(fā)第一、第二部分交界處神經(jīng)源性運(yùn)動(dòng)——RPMCs[9]。六甲胺可阻斷RPMCs,說明煙堿能神經(jīng)通過興奮性腸神經(jīng)參與RPMCs的發(fā)生[26]。RPMCs恒速通過單結(jié)腸帶到達(dá)結(jié)腸曲[8,25],可能參與糞便塑型[25]。逆向蠕動(dòng)多在正向蠕動(dòng)間期出現(xiàn),傳播速度較小,20世紀(jì)初即有報(bào)道[27]。液體灌注遠(yuǎn)段結(jié)腸誘發(fā)逆向蠕動(dòng),腸腔閉合,腔內(nèi)壓迅速升高。逆向蠕動(dòng)對河豚毒素敏感,但對六甲胺抵抗,說明非煙堿能腸神經(jīng)介導(dǎo)其發(fā)生、發(fā)展[28]。人為阻止內(nèi)容物排出,結(jié)腸出現(xiàn)不規(guī)律蠕動(dòng),節(jié)律性蠕動(dòng)的產(chǎn)生易受干擾[8]。

兔微小波也起自慢波[29-30],可雙向傳播,不被河豚毒素阻斷。微小波在結(jié)腸曲傳播較遠(yuǎn)段結(jié)腸快[8],其速度反映了ICC網(wǎng)絡(luò)的密度,類似大鼠小腸[31]。Ehrlein把在體兔結(jié)腸的逆向微小波稱為滾動(dòng)性袋狀活動(dòng)[25]。河豚毒素作用下兔結(jié)腸明顯舒張,出現(xiàn)了低頻和高頻微小波,后者傳播速度遠(yuǎn)大于前者[8-9]。兩者分別來自肌間神經(jīng)叢和黏膜下層,高頻微小波也可能不經(jīng)慢波介導(dǎo)[32]。微小波起始點(diǎn)多變,說明起搏細(xì)胞的頻率并不恒定,但肛端頻率比近端高,因此微小波常逆向傳播。

4 結(jié) 語

目前,離體動(dòng)物結(jié)腸運(yùn)動(dòng)研究中觀察到的推進(jìn)性運(yùn)動(dòng)多為ICC-MP起源的節(jié)律性推進(jìn)性運(yùn)動(dòng)復(fù)合波,非推進(jìn)性運(yùn)動(dòng)則為ICC-SMP起源的微小波。神經(jīng)源性藥物對RPMCs和微小波的作用表明,離體結(jié)腸的運(yùn)動(dòng)功能與腸神經(jīng)關(guān)系并不明顯,鈣成像等研究進(jìn)一步證實(shí)了ICC網(wǎng)絡(luò)在結(jié)腸運(yùn)動(dòng)中起到的主導(dǎo)作用。盡管存在解剖、方法學(xué)和命名的差異,但人和動(dòng)物擁有相似的結(jié)腸運(yùn)動(dòng)模式,進(jìn)一步探索各種運(yùn)動(dòng)模式的特征和功能,將對疾病的防治獲得更深入的了解。

[1] Christensen J.Motility of the colon[M]//Johnson J.Physiology of the gastrointestinal tract.New York:Raven,1994:991-1024.

[2] Tong WD,Ridolfi TJ,Kosinski L,etal.Effects of autonomic nerve stimulation on colorectal motility in rats[J].Neurogastroenterol Motil,2010,22(6):688-693.

[3] Lee HT,Hennig GW,Park KJ,etal.Heterogeneities in ICC Ca2+activity within canine large intestine[J].Gastroenterology,2009,136(7):2226-2236.

[4] Lee HT,Hennig GW,Fleming NW,etal.The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine[J].Gastroenterology,2007,132(5):1852-1865.

[5] Beckett EA,Takeda Y,Yanase H,etal.Synaptic specializations exist between enteric motor nerves and interstitial cells of Cajal in the murine stomach[J].J Comp Neurol,2005,493(2):193-206.

[6] Yoneda S,Takano H,Takaki M,etal.Properties of spontaneously active cells distributed in the submucosal layer of mouse proximal colon[J].J Physiol,2002,542(Pt 3):887-897.

[7] Huizinga JD,Martz S,Gil V,etal.Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns[J].Front Neurosci,2011,5:93.

[8] Dinning PG,Costa M,Brookes SJ,etal.Neurogenic and myogenic motor patterns of rabbit proximal,mid,and distal colon[J].Am J Physiol Gastrointest Liver Physiol,2012,303(1):G83-G92.

[9] Lentle RG,Janssen PW,Asvarujanon P,etal.High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit[J].J Comp Physiol B,2008,178(3):257-268.

[10] Wood JD,Brann LR,Vermillion DL.Electrical and contractile behavior of large intestinal musculature of piebald mouse model for Hirschsprung′s disease[J].Dig Dis Sci,1986,31(6):638-650.

[11] Christensen J,Anuras S,Hauser RL.Migrating spike bursts and electrical slow waves in the cat colon:effect of sectioning[J].Gastroenterology,1974,66(2):240-247.

[12] Keating DJ,Spencer NJ.Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes[J].Gastroenterology,2010,138(2):659-670.

[13] Fida R,Lyster DJ,Bywater RA,etal.Colonic migrating motor complexes (CMMCs) in the isolated mouse colon[J].Neurogastroenterol Motil,1997,9(2):99-107.

[14] Sarna S,Stoddard C,Belbeck L,etal.Intrinsic nervous control of migrating myoelectric complexes[J].Am J Physiol,1981,241(1):G16-G23.

[15] Rodriguez-Membrilla A,Martinez V,Jimenez M,etal.Is nitric oxide the final mediator regulating the migrating myoelectric complex cycle?[J].Am J Physiol,1995,268(2 Pt 1):G207-G214.

[16] Heredia DJ,Dickson EJ,Bayguinov PO,etal.Colonic elongation inhibits pellet propulsion and migrating motor complexes in the murine large bowel[J].J Physiol,2010,588(Pt 15):2919-2934.

[17] Gonzalez A,Sarna SK.Neural regulation of in vitro giant contractions in the rat colon[J].Am J Physiol Gastrointest Liver Physiol,2001,281(1):G275-G282.

[18] Karaus M,Sarna SK,Ammon HV,etal.Effects of oral laxatives on colonic motor complexes in dogs[J].Gut,1987,28(9):1112-1119.

[19] Powell AK,Fida R,Bywater RA.Motility in the isolated mouse colon:migrating motor complexes,myoelectric complexes and pressure waves[J].Neurogastroenterol Motil,2003,15(3):257-266.

[20] Spencer NJ,Bywater RA.Enteric nerve stimulation evokes a premature colonic migrating motor complex in mouse[J].Neurogastroenterol Motil,2002,14(6):657-665.

[21] Zagorodnyuk VP,Spencer NJ.Localization of the sensory neurons and mechanoreceptors required for stretch-evoked colonic migrating motor complexes in mouse colon[J].Front Physiol,2011,2:98.

[22] Bayguinov PO,Hennig GW,Smith TK.Ca2+imaging of activity in ICC-MY during local mucosal reflexes and the colonic migrating motor complex in the murine large intestine[J].J Physiol,2010,588(Pt 22):4453-4474.

[23] Pluja L,Alberti E,Fernandez E,etal.Evidence supporting presence of two pacemakers in rat colon[J].Am J Physiol Gastrointest Liver Physiol,2001,281(1):G255-G266.

[24] Alberti E,Mikkelsen HB,Wang XY,etal.Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats[J].Am J Physiol Gastrointest Liver Physiol,2007,292(6):G1499-G1510.

[25] Ehrlein HJ,Reich H,Schwinger M.Colonic motility and transit of digesta during hard and soft faeces formation in rabbits[J].J Physiol,1983,338:75-86.

[26] Bornstein JC,Costa M,Grider JR.Enteric motor and interneuronal circuits controlling motility[J].Neurogastroenterol Motil,2004,16 Suppl 1:34-38.

[27] Cannon WB.The Movements of the Intestines studied by Means of the Rontgen Rays[J].J Med Res,1902,7(1):72-75.

[28] Nicholas S,Spencer NJ.Peristalsis and fecal pellet propulsion do not require nicotinic,purinergic,5-HT3,or NK3 receptors in isolated guinea pig distal colon[J].Am J Physiol Gastrointest Liver Physiol,2010,298(6):G952-G961.

[29] Hennig GW,Spencer NJ,Jokela-Willis S,etal.ICC-MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine[J].Neurogastroenterol Motil,2010,22(5):e138-e151.

[30] Anuras S.Electromyogram of rabbit colon and cecum in vitro[J].J Lab Clin Med,1981,98(6):896-905.

[31] Bercik P,Bouley L,Dutoit P,etal.Quantitative analysis of intestinal motor patterns:spatiotemporal organization of nonneural pacemaker sites in the rat ileum[J].Gastroenterology,2000,119(2):386-394.

[32] Roberts RR,Ellis M,Gwynne RM,etal.The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal[J].J Physiol,2010,588(Pt 7):1153-1169.

猜你喜歡
甲胺離體節(jié)律
氟尼辛葡甲胺注射液的制備及性狀初步研究
空間里的時(shí)間:微重力等環(huán)境下的生物節(jié)律研究
長白落葉松離體再生體系的建立
固相萃取—離子色譜測定大氣顆粒物的甲胺類及其氧化產(chǎn)物
甲胺/DMF裝置廢水回用試驗(yàn)及運(yùn)行情況
切花月季‘雪山’的離體快繁體系的建立
靈魂離體
離體牙經(jīng)不同方法消毒后微生物培養(yǎng)分析
慢性給予GHRP-6對小鼠跑輪運(yùn)動(dòng)日節(jié)律的影響
運(yùn)用節(jié)律跳繩,提高跳繩教學(xué)質(zhì)量