肖乾鳳(綜述),譚茗月(審校)
(中南大學(xué)湘雅二醫(yī)院心血管內(nèi)科,長(zhǎng)沙 410011)
心血管疾病是目前世界上第一大疾病,絕大多數(shù)心臟病最終發(fā)展結(jié)局是心力衰竭,而這些心臟病患者幾乎都死于心力衰竭。近年來(lái)心力衰竭的診斷和治療雖然得到了改善,住院率卻一直在增加。因此,有必要從分子機(jī)制進(jìn)一步識(shí)別心力衰竭中的發(fā)展過(guò)程,以便為診斷和治療心力衰竭提供新的方向。微RNA(microRNA,miRNA)是一類內(nèi)源性的高度保守的小分子非編碼RNA,通過(guò)與靶信使RNA的3′端結(jié)合,使其降解或抑制其翻譯,從而參與基因的轉(zhuǎn)錄和表達(dá)調(diào)控,調(diào)節(jié)機(jī)體細(xì)胞增殖、分裂、凋亡等過(guò)程,調(diào)控多種疾病的病理過(guò)程。心力衰竭中也可以檢測(cè)到多種miRNA水平的變化[1]。因此,可以通過(guò)一些特定的miRNA水平來(lái)診斷心力衰竭,還可以嘗試通過(guò)特異性地抑制或誘導(dǎo)一些miRNA的表達(dá)而從分子水平來(lái)治療心力衰竭。
心力衰竭發(fā)展過(guò)程中常伴有心肌細(xì)胞的壞死和凋亡,而壞死和凋亡是心力衰竭中心臟重構(gòu)的環(huán)節(jié)之一。各種心臟疾病都會(huì)導(dǎo)致心肌細(xì)胞功能失調(diào),在缺血、缺氧、應(yīng)激、負(fù)荷過(guò)重、感染等條件下,心肌細(xì)胞會(huì)發(fā)生壞死和凋亡,許多研究發(fā)現(xiàn)miRNA參與該病理過(guò)程。
Hu等[2]發(fā)現(xiàn)在小鼠心肌梗死模型中,miR-210可通過(guò)作用于蛋白酪氨酸磷酸酶抑制心肌細(xì)胞凋亡。Mutharasan等[3]證實(shí)了在缺氧時(shí)miR-210上升,miR-210過(guò)表達(dá)可減少氧化應(yīng)激產(chǎn)物及其引起的細(xì)胞凋亡,氧化應(yīng)激時(shí),p53和Akt(一種絲氨酸/蘇氨酸蛋白激酶)可使miR-210升高,而miR-210水平上升能減少AIFM3(一種凋亡誘導(dǎo)因子)水平,亦能作用于缺氧誘導(dǎo)因子(hypoxia-inducible factor,HIF)-32,但miR-210主要是通過(guò)減少線粒體活性氧類產(chǎn)物保護(hù)心肌細(xì)胞的。小鼠miR-214基因缺失可引起心臟收縮性喪失,增加凋亡。缺血性損傷時(shí),miR-214能抑制鈉/鈣變換蛋白1(NCX1)和抑制鈣/鈣調(diào)蛋白依賴性蛋白Ⅱδ(calcium/calmodulin-dependent protein Ⅱ delta,CaMⅡδ)、親環(huán)蛋白D和凋亡基因Bcl-2家族成員等Ca2+信號(hào)通路,維持心肌細(xì)胞Ca2+穩(wěn)態(tài),防止心肌細(xì)胞因Ca2+負(fù)荷過(guò)重而導(dǎo)致的死亡[4]。在缺血性條件下,miR-24過(guò)表達(dá)可使小鼠心肌乳酸脫氫酶釋放減少,細(xì)胞穩(wěn)定性增加,壞死和凋亡率減低。研究表明,miR-24是通過(guò)抑制Bcl-2L11(Bcl-2-like 11)來(lái)保護(hù)心臟的[5]。Qian等[6]發(fā)現(xiàn),miR-24直接抑制BH3區(qū)域,抑制蛋白質(zhì)Bim(前凋亡Bcl-2家族蛋白)的表達(dá),抑制心肌細(xì)胞凋亡。Wang等[7]研究發(fā)現(xiàn),在心肌細(xì)胞中,miR-494直接作用于前凋亡蛋白(PTEN、ROCK1、CaMIIδ等)和抗凋亡蛋白(成纖維細(xì)胞生長(zhǎng)因子受體2、白細(xì)胞抑制因子),激活線粒體信號(hào)通路Akt,保護(hù)心臟缺血再灌注損傷。miR-145過(guò)表達(dá)可抑制由H2O2引起的細(xì)胞壞死,氧化應(yīng)激產(chǎn)物表達(dá)和線粒體結(jié)構(gòu)破壞,它在心臟中的保護(hù)作用是通過(guò)抑制Bnip3(一種心肌細(xì)胞的線粒體凋亡途徑的啟動(dòng)因子)的過(guò)表達(dá),而B(niǎo)nip3是心肌細(xì)胞中線粒體凋亡通路的起始因子[8]。Wang等[9]發(fā)現(xiàn),miR-499能通過(guò)抑制磷酸酶介導(dǎo)的線粒體動(dòng)力蛋白相關(guān)蛋白1(dynamin-related protein-1,DRP1),減低DRP1在線粒體聚集和DRP1介導(dǎo)的線粒體破裂,從而抑制心肌細(xì)胞凋亡。在心臟缺氧時(shí),miR-199a是下調(diào)的,低氧時(shí)補(bǔ)充miR-199a可通過(guò)作用于HIF-1ɑ和Sirt1(Sirt1下調(diào)脯氨酰1羥化酶2,穩(wěn)定Hif-1ɑ),抑制HIf-1ɑ的表達(dá)和p53的穩(wěn)定性,減少凋亡[10]。Fang等[11]發(fā)現(xiàn),miR-378缺乏可加重缺氧導(dǎo)致的心肌凋亡和細(xì)胞損傷,相反,其過(guò)表達(dá)能顯著增強(qiáng)細(xì)胞活性,減少乳酸脫氫酶的釋放,抑制凋亡和壞死,其作用機(jī)制為miRA-378通過(guò)作用于caspase-3,抑制caspase-3的表達(dá),減少心肌細(xì)胞的缺血性損傷,在心臟病中治療凋亡和損傷。但Knezevic等[12]證實(shí)了miR-378的相反作用,過(guò)表達(dá)的miR-378通過(guò)直接作用于胰島素樣生長(zhǎng)因子1(insulin-like growth factor-1,IGF-1)和減少Akt信號(hào)流增強(qiáng)心肌細(xì)胞凋亡,抑制miR-378能保護(hù)缺氧條件下IGF-1和Akt下調(diào)引起的細(xì)胞損傷。因此,miR-378對(duì)于心肌細(xì)胞凋亡的影響還有待于進(jìn)一步研究。Yeh等[13]發(fā)現(xiàn),在麻醉的心臟中缺氧再灌注時(shí),miR-27a可通過(guò)白細(xì)胞介素(interleukin,IL)10相關(guān)通路調(diào)節(jié)細(xì)胞凋亡。在miR-27a前體轉(zhuǎn)染的心肌細(xì)胞中,IL-10水平下降,核因子κB表達(dá)下調(diào),能夠激活caspase-3和促進(jìn)凋亡。miR-1和miR-133在心肌凋亡中產(chǎn)生相反的效果,miR-1上調(diào)、miR-133下調(diào)促進(jìn)凋亡,反之亦然。miR-1通過(guò)作用于熱激蛋白(heat shock protein,Hsp)60、Hsp70的3′非翻譯區(qū),減少Hsp60和Hsp70的蛋白質(zhì)水平,從而促進(jìn)凋亡,而miR-133通過(guò)作用于caspase-9基因序列的多個(gè)位點(diǎn),抑制caspase-9的蛋白質(zhì)和信使mRNA的表達(dá),抑制凋亡[14]。
心臟重構(gòu)是慢性心功能不全的必要環(huán)節(jié),心力衰竭發(fā)展過(guò)程中最后都伴有心肌肥厚、心肌纖維化、心臟擴(kuò)大,miRNA對(duì)于這個(gè)環(huán)節(jié)也具有十分重要的調(diào)節(jié)作用。有研究總結(jié)了一些調(diào)節(jié)心肌肥厚的miRNA,其中,miR-1通過(guò)下調(diào)IGF-1、鈣調(diào)素、心肌強(qiáng)化因子2、Gata4(一種轉(zhuǎn)錄因子)等抑制Ca2+信號(hào)通路,抑制心臟肥厚[15-16];在肥厚的心肌中miR-1的表達(dá)是下調(diào)的,miR-1還可作用于L-型鈣通道的β亞基,抑制β2鈣通道的表達(dá),減低細(xì)胞內(nèi)Ca2+濃度,從而抑制心肌肥厚[17]。此外,miR-1的減少可使twinfilin-1(一種細(xì)胞骨架調(diào)節(jié)蛋白)表達(dá)增加,刺激心肌細(xì)胞肥厚[18]。miRNA-133通過(guò)作用于CnAβ(一種調(diào)節(jié)肥厚蛋白磷酸酶的因子)、活化T細(xì)胞核因子(nuclear factor of activated T cell,NFAT)c4、Rhoa(一種調(diào)節(jié)心臟肥厚GDP-GTP交換蛋白)、cdc42(與肥厚相關(guān)的信號(hào)轉(zhuǎn)導(dǎo)激酶)等下調(diào)肥厚蛋白磷酸酶、肥厚轉(zhuǎn)錄因子,抗心臟肥厚[15,19]。Dong等[20]發(fā)現(xiàn),抑制磷酸酶或miR-133表達(dá)增加可防止心臟肥厚,miR-133通過(guò)后轉(zhuǎn)錄抑制磷酸酶/NFAT信號(hào),抑制心臟肥厚;因此miR-133a可以調(diào)節(jié)心肌纖維化和肥厚,減少結(jié)締組織因子表達(dá),減少纖維心肌重構(gòu),改善舒張功能[21]。Wang等[22]也報(bào)道了miR-1和miR-133通過(guò)作用于IGF-1信號(hào)調(diào)節(jié)心臟肥厚。miR-29通過(guò)作用于彈性蛋白、原纖維蛋白及Ⅰ、Ⅱ、Ⅲ型膠原蛋白等抑制心肌細(xì)胞纖維化[23]。Wang等[24]發(fā)現(xiàn),miR-9通過(guò)抑制心肌素而作用于NFATc3信號(hào)通路,抑制心臟肥厚;miR-98能抑制血管緊張素受體Ⅱ所致心房腦鈉肽信使RNA的上調(diào),通過(guò)下調(diào)細(xì)胞周期蛋白D2抗凋亡抗肥厚,因此內(nèi)源性miR-98在介導(dǎo)硫氧還蛋白1抑制血管緊張素Ⅱ所致的心臟肥厚中具有重要作用[25]。miR-26b可通過(guò)調(diào)節(jié)Gata4調(diào)節(jié)心臟肥厚,miR-26b水平降低使Gata4上調(diào),誘導(dǎo)心臟肥厚[26]。miR-30抑制結(jié)締組織生長(zhǎng)因子抑制心臟肥厚[22];miR-30b-5P在心臟肥厚中下調(diào),通過(guò)抑制肥厚信號(hào)CaMIIδ來(lái)抑制心臟肥厚[27]。
miR-18b、miR-195、miR-199a、miR-199b、miR-21、miR-23和miR-499等是心臟中致肥厚的miRNA。miR-199b可通過(guò)抑制雙重特異性酪氨酸磷酸化調(diào)節(jié)酶1a,增強(qiáng)NFAT信號(hào),促進(jìn)心臟肥厚[22,28]。miR-208通過(guò)抑制甲狀腺相關(guān)蛋白1和肌生成蛋白(負(fù)性調(diào)節(jié)肌細(xì)胞肥厚生長(zhǎng)和增殖)及編碼重鏈肌球蛋白β促進(jìn)心肌肥厚[22,29]。Thum等[30]研究發(fā)現(xiàn),miR-21通過(guò)抑制Spry1(sprouty homologue 1,一種酪氨酸激酶調(diào)節(jié)因子受體),增強(qiáng)胞外信號(hào)調(diào)節(jié)激酶-促分裂原活化蛋白質(zhì)活性,調(diào)節(jié)纖維化細(xì)胞生長(zhǎng),控制心肌間質(zhì)的纖維化和肥厚程度。miR-21在心肌梗死后心房纖維化中也是上升的,抑制miR-21可抑制心房纖維化[31]。miR-23a通過(guò)抑制Murf1翻譯傳遞心臟肥厚信號(hào)NFATc3[22],還通過(guò)作用于Foxo3a(一種轉(zhuǎn)錄因子)調(diào)節(jié)心臟肥厚,miR-23a轉(zhuǎn)基因小鼠模型中心臟肥厚,而基因剔除減少心臟肥厚[32];miR-499則通過(guò)CnA(一種調(diào)節(jié)肥厚蛋白磷酸酶的因子)調(diào)節(jié)肥厚蛋白磷酸酶,促進(jìn)心臟肥厚[15]。miR-22上調(diào)能顯著增加細(xì)胞面積和影響肥厚標(biāo)志物的表達(dá),抑制PETN信使RNA 3′端非翻譯區(qū)的活性和蛋白質(zhì)表達(dá)水平,miR-22下調(diào)能促進(jìn)PETN的表達(dá),有效防止心肌肥厚[33];miRNA-27b過(guò)表達(dá)可引起心臟肥厚和心功能失調(diào),可能是通過(guò)作用于過(guò)氧化物酶體增殖物激活受體γ,還能抑制基質(zhì)金屬蛋白酶13,促進(jìn)心臟纖維化[34,35]。
心力衰竭中常伴隨miRNA水平的變化,miR-1、miR-29、miR-30、miR-133、miR-150、miR-7、miR-378等在心力衰竭患者中的表達(dá)是下調(diào)的,而miR-23a、miR-125、miR-146、miR-195、miR-199、miR-214、miR-181b等是上調(diào)的。其中,miR-7和miR-378表達(dá)顯著下調(diào),而miR-214和miR-181b表達(dá)顯著上調(diào),這些miRNA從分子機(jī)制上影響心力衰竭的發(fā)生、發(fā)展過(guò)程;心力衰竭早期,這四種miRNA的改變可引起信號(hào)通路紊亂[36]。還有一些miRNA通過(guò)兒茶酚胺β1腎上腺素受體信號(hào)通路影響慢性心力衰竭的過(guò)程,在兒茶酚胺敏感性下降的心力衰竭中,miR-10、miR-300、miR-302、miR-302水平降低,miR-422顯著升高[37]。
miRNA還能作為診斷和治療心力衰竭的潛在標(biāo)志物。Satoh等[38]發(fā)現(xiàn)在擴(kuò)張型心肌病患者中,miR-208、miR-499水平上升,且miR-208表達(dá)與主要組織相容性復(fù)合體的信使RNA表達(dá)相關(guān),與不良的臨床預(yù)后相關(guān)。Tijsen等[39]發(fā)現(xiàn),miR-423-5P在心力衰竭中上升最明顯,且與N末端腦鈉肽前體水平和紐約心功能分級(jí)等級(jí)相關(guān)。血漿miR-126水平與腦鈉肽水平、心功能紐約心功能分級(jí)呈負(fù)相關(guān)[40]。miR-133也與腦鈉肽水平呈負(fù)相關(guān)[19]。miR-210也是充血性心力衰竭的良好標(biāo)志物,在鹽敏感心力衰竭小鼠中,miR-210的血漿水平和分子表達(dá)水平均升高,且紐約心功能分級(jí)Ⅲ-Ⅳ級(jí)患者較Ⅱ級(jí)和對(duì)照組高,miR-210也與腦鈉肽水平高度相關(guān),miR-210高的患者腦鈉肽改善不明顯[41]。血漿腦鈉肽水平是診斷心力衰竭的可靠標(biāo)志物,因此可以依賴這些miRNA作為心力衰竭診斷和預(yù)后的標(biāo)志物,作為心力衰竭診斷的補(bǔ)充和鑒別一些其他原因引起的腦鈉肽升高疾病。根據(jù)這些miRNA在心力衰竭中的作用機(jī)制,通過(guò)誘導(dǎo)或抑制某些miRNA的表達(dá)來(lái)預(yù)防和治療心力衰竭,如miR-212/132缺乏的小鼠可以保護(hù)壓力負(fù)荷過(guò)重引起的心力衰竭,miR-132抑制劑可挽救小鼠心臟肥厚和心力衰竭[42]。
miRNA研究為心血管疾病的診斷和治療開(kāi)辟了新領(lǐng)域。研究表明,許多miRNA在心力衰竭心肌細(xì)胞凋亡、心臟重塑的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中都有一定的調(diào)節(jié)作用,且心力衰竭患者中還可檢測(cè)到一些miRNA水平的變化,其中miR-423-5P、miR-126、miR-133和miR-210與腦鈉肽存在一定的關(guān)系,可通過(guò)這些特定作用的miRNA來(lái)提高對(duì)心力衰竭的進(jìn)一步認(rèn)識(shí)。明確miRNA在心力衰竭中的作用,從分子水平上研究心力衰竭的病理過(guò)程,未來(lái)可能根據(jù)這些miRNA的水平作為診斷心力衰竭和判斷其預(yù)后的重要標(biāo)志物。隨著對(duì)miRNA的深入研究,一些miRNA很有可能成為治療心力衰竭的靶點(diǎn),但這一過(guò)程仍在探索之中。
[1] van de Vrie M,Heymans S,Schroen B.MicroRNA involvement in immune activation during heart failure[J].Cardiovasc Drugs Ther,2011,25(2):161-170.
[2] Hu S,Huang M,Li Z,etal.MicroRNA-210 as a novel therapy for treatment of ischemic heart disease[J].Circulation,2010,122(11 Suppl):S124-S131.
[3] Mutharasan RK,Nagpal V,IchikawaY,etal.MicroRNA-210 is upregulated in hypoxic cardiomyocytes through Akt-and p53-dependent pathways and exerts cytoprotective effects[J].Am J Physiol Heart Circ Physiol,2011,301(4):H1519-H1530.
[4] Aurora AB,Mahmoud AI,Luo X,etal.MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+overload and cell death[J].J Clin Invest,2012,122(4):1222-1232.
[5] Li DF,Tian J,Guo X,etal.Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes[J].Physiol Res,2012,61(6):555-565.
[6] Qian L,Van Laake LW,Huang Y,etal.MiR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J].J Exp Med,2011,208(3):549-560.
[7] Wang X,Zhang X,Ren XP,etal.MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury[J].Circulation,2010,122(13):1308-1318.
[8] Li R,Yan G,Li Q,etal.MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway[J].PLoS One,2012,7(9):e44907.
[9] Wang JX,Jiao JQ,Li Q,etal.MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1[J].Nat Med,2011,17(1):71-78.
[10] Rane S,He M,Sayed D,etal.Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J].Circ Res,2009,104(7):879-886.
[11] Fang J,Song XW,Tian J,etal.Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J].Apoptosis,2012,17(4):410-423.
[12] Knezevic I,Patel A,Sundaresan NR,etal.A novel cardiomyocyte-enriched microRNA,miR-378,targets insulin-like growth factor 1 receptor:implications in postnatal cardiac remodeling and cell survival[J].J Biol Chem,2012,287(16):12913-12926.
[13] Yeh CH,Chen TP,Wang YC,etal.MicroRNA-27a regulates cardiomyocytic apoptosis during cardioplegia-induced cardiac arrest by targeting interleukin 10-related pathways[J].Shock,2012,38(6):607-614.
[14] Xu C,Lu Y,Pan Z,etal.The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60,HSP70 and caspase-9 in cardiomyocytes[J].J Cell Sci,2007,120(Pt 17):3045-3052.
[15] Gladka MM,da Costa Martins PA,De Windt LJ.Small changes can make a big difference-microRNA regulation of cardiac hypertrophy[J].J Mol Cell Cardiol,2012,52(1):74-82.
[16] Ikeda S,He A,Kong SW,etal.MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes[J].Mol Cell Biol,2009,29(8):2193-2204.
[17] Wu Y,Geng P,Wang YQ,etal.Effects of microRNA-1 on negatively regulating L-type calcium channel beta2 subunit gene expression during cardiac hypertrophy[J].Zhongguo Ying Yong Sheng Li Xue Za Zhi,2012,28(4):304-308.
[18] Li Q,Song XW,Zou J,etal.Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy[J].J Cell Sci,2010,123(Pt 14):2444-2452.
[19] Carè A,Catalucci D,Felicetti F,etal.MicroRNA-133 controls cardiac hypertrophy[J].Nat Med,2007,13(5):613-618.
[20] Dong DL,Chen C,Huo R,etal.Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy:a novel mechanism for progressive cardiac hypertrophy[J].Hypertension,2010,55(4):946-952.
[21] Matkovich SJ,Wang W,Tu Y,etal.MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J].Circ Res,2010,106(1):166-175.
[22] Wang J,Yang X.The function of miRNA in cardiac hypertrophy[J].Cell Mol Life Sci,2012,69(21):3561-3570.
[23] van Rooij E,Sutherland LB,Thatcher JE,etal.Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proc Natl Acad Sci U S A,2008,105(35):13027-13032.
[24] Wang K,Long B,Zhou J,etal.miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy[J].J Biol Chem,2010,285(16):11903-11912.
[25] Yang Y,Ago T,Zhai P,etal.Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7[J].Circ Res,2011,108(3):305-313.
[26] Han M,Yang Z,Sayed D,etal.GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy[J].Cardiovasc Res,2012,93(4):645-654.
[27] He J,Jiang S,Li FL,etal.MicroRNA-30b-5p is involved in the regulation of cardiac hypertrophy by targeting CaMKIIδ[J].J Investig Med,2013,61(3):604-612.
[28] da Costa Martins PA,Salic K,Gladka MM,etal.MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling[J].Nat Cell Biol,2010,12(12):1220-1227.
[29] Callis TE,Pandya K,Seok HY,etal.MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J].J Clin Invest,2009,119(9):2772-2786.
[30] Thum T,Gross C,Fiedler J,etal.MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J].Nature,2008,456(7224):980-984.
[31] Cardin S,Guasch E,Luo X,etal.Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure[J].Circ Arrhythm Electrophysiol,2012,5(5):1027-1035.
[32] Wang K,Lin ZQ,Long B,etal.Cardiac hypertrophy is positively regulated by MicroRNA miR-23a[J].J Biol Chem,2012,287(1):589-599.
[33] Xu XD,Song XW,Li Q,etal.Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy[J].J Cell Physiol,2012,227(4):1391-1398.
[34] Wang J,Song Y,Zhang Y,etal.Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice[J].Cell Res,2012,22(3):516-527.
[35] Hou N,Wang J,Li ZH,etal.Cardiomycyte overexpression of miR-27b resulted in cardiac fibrosis and mitochondria injury in mice[J].Yi Chuan,2012,34(3):326-334.
[36] Naga Prasad SV,Duan ZH,Gupta MK,etal.Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks[J].J Biol Chem,2009,284(40):27487-27499.
[37] Funahashi H,Izawa H,Hirashiki A,etal.Altered microRNA expression associated with reduced catecholamine sensitivity in patients with chronic heart failure[J].J Cardiol,2011,57(3):338-344.
[38] Satoh M,Minami Y,Takahashi Y,etal.Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy[J].J Card Fail,2010,16(5):404-410.
[39] Tijsen AJ,Creemers EE,Moerland PD,etal.MiR423-5p as a circulating biomarker for heart failure[J].Circ Res,2010,106(6):1035-1039.
[40] Fukushima Y,Nakanishi M,Nonogi H,etal.Assessment of plasma miRNAs in congestive heart failure[J].Circ J,2011,75(2):336-340.
[41] Endo K,Naito Y,Ji X,etal.MicroRNA 210 as a biomarker for congestive heart failure[J].Biol Pharm Bull,2013,36(1):48-54.
[42] Ucar A,Gupta SK,Fiedler J,etal.The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy[J].Nat Commun,2012,3:1078.