紀慧麗,盧晟盛,潘登科
1. 廣西大學動物科學技術學院,亞熱帶農(nóng)業(yè)生物資源保護與利用國家重點實驗室,南寧 530004;
2. 中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部畜禽遺傳資源與種質創(chuàng)新重點實驗室,北京 100193
體細胞核移植后表觀遺傳重編程的異常及其修復
紀慧麗1,2,盧晟盛1,潘登科2
1. 廣西大學動物科學技術學院,亞熱帶農(nóng)業(yè)生物資源保護與利用國家重點實驗室,南寧 530004;
2. 中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部畜禽遺傳資源與種質創(chuàng)新重點實驗室,北京 100193
體細胞核移植(Somatic cell nuclear transfer, SCNT)是指將高度分化的體細胞移入到去核的卵母細胞中發(fā)育并最終產(chǎn)生后代的技術。然而,體細胞克隆的總體效率仍然處于一個較低的水平,主要原因之一是由于體細胞供體核不完全的表觀遺傳重編程,包括DNA甲基化、組蛋白乙?;⒒蚪M印記、X染色體失活和端粒長度等修飾出現(xiàn)的異常。使用一些小分子化合物以及Xist基因的敲除或敲低等方法能修復表觀遺傳修飾錯誤,輔助供體核的重編程,從而提高體細胞克隆效率,使其更好地應用于基礎研究和生產(chǎn)實踐。文章對體細胞核移植后胚胎發(fā)育過程中出現(xiàn)的異常表觀遺傳修飾進行了綜述,并著重論述了近年來有關修復表觀遺傳錯誤的研究進展。
體細胞核移植;重編程;表觀遺傳異常;小分子化合物
Keywords:SCNT; reprogramming; epigenetic errors; small molecules
體細胞核移植(Somatic cell nuclear transfer, SCNT)技術是將高度分化的體細胞核移植到去核的卵母細胞中使之構成重構胚,通過將克隆胚胎移植到代孕動物體內(nèi)后獲得與供體細胞具有相同基因組的克隆動物。1997年,Wilmut等[1]首次報道了以成體綿羊乳腺上皮細胞為核供體的克隆羊“Dolly”的誕生,證明了高度分化的體細胞仍具有全能性,激起了各國科學家對體細胞克隆動物的研究熱潮。目前,通過體細胞核移植技術已經(jīng)成功獲得了多種哺乳動物的克隆后代[1~6]。 然而,體細胞克隆胚胎的發(fā)育能力低,只有一部分的重構胚胎能發(fā)育到足月,其中有許多在出生后不久就死亡[6,7],即使存活的后代也表現(xiàn)出胎盤肥大[8,9]、胎兒過度生長[10]等,這種現(xiàn)象稱為“巨胎征”。
造成克隆效率低以及克隆動物各類異常表型的主要原因之一是表觀遺傳修飾在克隆胚胎早期發(fā)育階段的異常重編程[11]。體細胞核在卵胞質中發(fā)生重新編程,轉變?yōu)橐环N全能的胚胎狀態(tài),這其中包含了復雜的表觀遺傳修飾,包括染色質重塑、DNA甲基化、組蛋白共價修飾、X染色體失活和印記基因表達等。體細胞重編程在哺乳動物和克隆胚胎的發(fā)育過程中,對建立核的全能性起關鍵作用。研究證明,供體細胞核的不完全重編程造成錯誤的表觀遺傳,引起相關基因的異常表達,最終影響克隆胚胎的發(fā)育[12]。為了提高克隆動物的制備效率,科研人員嘗試多種方法來提高克隆效率,例如改良去核程序[13]、優(yōu)化重構胚的激活[14]、供體細胞的化學處理[15]、連續(xù)兩次核移植[16],但是與正常受精的胚胎相比,克隆動物制備效率仍然很低,而且在不同物種中存在很大的差異。本文主要對克隆胚胎中錯誤的表觀遺傳修飾以及如何修復進行了綜述。
1.1 DNA甲基化
體細胞克隆動物普遍存在 DNA甲基化水平過高的現(xiàn)象,主要表現(xiàn)在去甲基化不充分和提前甲基化??寺∨E咛サ幕蚪M去甲基化發(fā)生時間跟正常胚胎幾乎相同,在 2-細胞期達到最低,隨后出現(xiàn)過早重新甲基化,甲基化水平上升;體細胞基因組在核移植后基因組去甲基化的程度較受精胚胎低,其DNA甲基化水平明顯高于正常胚胎的水平而更接近于體細胞狀態(tài)[17]。Dean等[18]檢測克隆牛桑椹胚處于細胞分裂中期的細胞核,發(fā)現(xiàn)了較高的甲基化水平,在4~8細胞期重新甲基化提前發(fā)生,這可能是因為體細胞核中甲基化酶的存在形式和卵中的不同,且滋養(yǎng)層細胞發(fā)生異常的超甲基化。在小鼠克隆胚胎,核移植后囊胚期重新甲基化之前發(fā)生持續(xù)的去甲基化,滋養(yǎng)層細胞上出現(xiàn)異常的超甲基化修飾。Beaujean等[19]用同樣的方法分析綿羊成纖維細胞核移植胚胎,發(fā)現(xiàn)2~8細胞期的核移植胚胎染色特征與供體細胞相似,顯示出過高的甲基化水平,囊胚期滋養(yǎng)層細胞甲基化程度也較高??傊寺∨咛プ甜B(yǎng)層細胞的甲基化過高,明顯異常。
1.2 組蛋白修飾
組蛋白乙?;怯山M蛋白乙?;D移酶(Histone acetyltransferase, HAT)和組蛋白去乙?;?Histone deacetylase, HDAC)協(xié)調催化的,一般修飾N-末端保守的賴氨酸殘基部位,組蛋白乙?;绊懭旧w中組蛋白和染色質之間的相互作用,利于轉錄因子結合和/或可調節(jié)組蛋白 N-端區(qū)與蛋白質之間的相互作用,從而促進轉錄[20]。研究發(fā)現(xiàn),克隆牛和水牛胚胎與體外受精胚胎相比,乙?;斤@著降低[21,22]。檢測克隆豬胚胎發(fā)現(xiàn),H3K9、H3K14、H4K16位點的乙?;皆隗w細胞核移入后下降,之后逐漸消失,重構胚胎激活后,乙酰化的恢復與孤雌激活胚胎相似,H3/K9、K14乙?;l(fā)生在后/末期,H4K16乙?;l(fā)生在原核期[23]。Wang等[24]研究發(fā)現(xiàn),小鼠體細胞核移植后組蛋白H3K9和H3K14高度乙?;?,隨后核質進行重構時乙?;街饾u降低,而且重構胚的乙?;w水平比正常受精胚胎低。以上研究表明,體細胞核移植胚胎中,組蛋白乙?;闹鼐幊淌遣煌耆?。
組蛋白甲基化修飾主要發(fā)生在賴氨酸和精氨酸側鏈,較組蛋白乙?;鼮閺碗s,可發(fā)生一甲基化、二甲基化和三甲基化修飾。組蛋白 H3K9的三甲基化和二甲基化與基因的沉默相關,而 H3K4甲基化引起基因轉錄的起始[25]。研究發(fā)現(xiàn),克隆小鼠胚胎在激活后 H3K9的三甲基化和二甲基化逐漸地去甲基化,與正常受精胚胎不同,克隆胚胎中沒有觀察到H3K9三甲基化或二甲基化的不對稱分布[24]。同樣,Zhang等[26]也發(fā)現(xiàn)了克隆胚胎中異常的組蛋白甲基化修飾,正常囊胚的內(nèi)細胞團中H3K27是三甲基化,而在克隆囊胚中卻不存在這種修飾。
1.3 X染色體失活
XIST基因在 X染色體失活(X chromosome inactivation, XCI)中起重要作用,其編碼非翻譯的RNA ,啟動X染色體的失活,XIST基因在X染色體的失活中心開始轉錄,并使整條染色體轉錄失活。在沒有XIST RNA的情況下,X染色體失活也能被起始,但XIST是X染色體維持穩(wěn)定沉默所必需的[27]。研究發(fā)現(xiàn),在克隆小鼠囊胚中,失活的X染色體被重新激活,但在后期發(fā)育中X連鎖基因異常表達,沒有顯示 XCI印記的正常模式[28]。Inoue等[29]研究發(fā)現(xiàn),在雌性和雄性克隆胚胎中,XIST的表達水平顯著高于對照組體外受精胚胎,XIST的異常表達首先出現(xiàn)在 4-細胞期,在囊胚期增強。流產(chǎn)克隆牛胎兒和死亡初生牛犢內(nèi)XCI的模式發(fā)生了改變,有胎盤的牛表現(xiàn)出X染色體隨機失活,與正常對照組和健康克隆小牛中優(yōu)先失活父源X染色體相反[30]。在克隆牛囊胚中沒有發(fā)現(xiàn)X連鎖基因的異常表達,但是在后期發(fā)育中發(fā)現(xiàn),死亡克隆牛的胎盤中X連鎖基因是雙等位基因表達,而不是母本特異性表達[31],然而在存活的克隆牛胎盤中只有一條未失活的X染色體[30],這表明XCI的異常模式導致了胎兒的死亡,X連鎖基因的異常表達嚴重影響胎盤的發(fā)育。
1.4 基因組印記
基因組印記(Genomic imprinting)指控制某一表型的一對等位基因由于親源不同而差異性表達,即機體只表達來自親本一方的等位基因?;蚪M印記的產(chǎn)生及其控制未涉及到 DNA 序列的變化,主要依靠 DNA 差異甲基化等非基因突變因素維持?;虻恼S∮泴Σ溉閯游锱咛ズ吞旱恼0l(fā)育極其重要,錯誤的印記會引起嚴重的遺傳疾病或致癌。在克隆動物中觀察到最普遍的表型是胎兒生長異常,例如胎盤肥大、出生體重增大以及胎兒死亡,這是天然存在和印記基因的定向突變共同的作用結果,表明印記基因的異常表達可能會導致克隆動物異常發(fā)育[32]。在克隆小鼠中,沒有觀察到任何單一印記基因的異常表達與異常胎兒過度生長的程度之間有實質性的關聯(lián),然而,幾個印記基因的累積失調對胎兒的生長具有相對的影響[33]。分析發(fā)現(xiàn),植入前胚胎發(fā)育相關的印記基因——胰島素樣生長因子-2(Igf2)在克隆胚胎中的表達顯著高于體外受精胚胎[34],Igf2的過表達和Igf2r的表達下調導致小鼠胎兒和胎盤的過度生長[35]。在死亡克隆牛器官內(nèi) Igf2和H19基因表達均出現(xiàn)異常,而在成活的克隆牛體內(nèi),只有肌肉內(nèi)的Igf2基因表達變化較大[36]。同樣,在死亡克隆豬胎盤上發(fā)現(xiàn)Igf2和H19基因呈現(xiàn)異常的高甲基化水平[37]??傊?,體細胞克隆過程中印記基因的異常表達是引起克隆后代發(fā)育異常和死亡的原因之一。
1.5 端粒長度
端粒是線狀染色體的天然末端,通過阻止末端編碼DNA序列的損耗和防止端-端染色體融合,在維持染色體 DNA的完整性方面發(fā)揮關鍵作用[38]。一般來說,端粒長度的一些損失發(fā)生在每個細胞分裂時,是滯后鏈不完全復制的結果。多莉羊是由成年上皮細胞做供體克隆所得,其端粒比同齡自然繁育羊短[39]。然而,后來的研究發(fā)現(xiàn),克隆動物的端粒長度與同齡自然繁育的對照組相似,克隆動物中端粒酶的活性被重新激活到與對照組相似的水平[40]。端粒長度的調節(jié)在一定程度上與用于克隆的供體細胞類型有關,由成纖維細胞或肌細胞得到的克隆牛的端粒長度與年齡相仿的對照組相似,然而上皮細胞得到的克隆牛的端粒沒有恢復到正常長度[41]。在克隆桑椹胚期端粒處于供體細胞的水平,而囊胚期端粒已經(jīng)恢復到正常長度,這可能是由于早期胚胎中的端粒酶重新調整了供體基因組縮短的端粒[42]。
體細胞核移植技術效率低下的主要原因是分化的體細胞核不能被卵母細胞質完全重編程,主要表現(xiàn)為異常的表觀遺傳修飾模式。如何修復這些異常的表觀遺傳修飾,目前的研究大多是使用能改變表觀遺傳水平的小分子化合物處理重構胚胎,以及敲除或敲低相關基因來改變表觀遺傳修飾。
2.1 DNA甲基化抑制劑
DNA甲基化被兩種 DNA甲基轉移酶(DNA methyltransferase, DNMT)催化:DNMT1維持DNA復制期間已經(jīng)建立的甲基化模式,而 DNMT3a和DNMT3b參與建立胚胎植入前的從頭甲基化模式。通過應用DNA甲基轉移酶抑制劑(DNMTi),可以抑制異常DNA甲基化的發(fā)生,修復表觀遺傳錯誤,從而提高動物克隆效率。研究證明,S-腺苷高半胱氨酸(S-adenosylhomocysteine, SAH)[43]、5-氮雜-2′-脫氧胞苷(5-aza-dC)[21,44]和RG108[45]能改變DNA甲基化修飾。
SAH是一種非核苷類化合物DNMTi,沒有細胞毒性,是S-腺苷甲硫氨酸(SAM)代謝產(chǎn)物的類似物,而SAM是DNA甲基化的主要甲基供體,SAH能抑制細胞內(nèi)大多數(shù)甲基轉移酶的活性而并不摻入DNA。用SAH處理供體細胞成纖維細胞,發(fā)現(xiàn)SAH能誘導總體 DNA去甲基化,并且能提高端粒酶活性、重新激活部分失活的X染色體,所得到的克隆胚胎的發(fā)育潛力有所提高[43]。
5-aza-dC是一種核苷類似物 DNMTi,主要在DNA復制過程中摻入DNA,然后被DNA甲基轉移酶識別,并與其共價結合而抑制該酶的活性,使基因組DNA發(fā)生去甲基化。Enright等[21]用0.01 μmol/L的5-aza-dC處理牛供體細胞降低了 DNA甲基化水平,同時組蛋白乙酰化水平也有所提高。5-aza-dC和TSA聯(lián)合處理供體細胞和克隆胚胎,顯著降低了DNA甲基化水平,提高了克隆胚胎的體外發(fā)育潛力[44]。
RG108是一種新型的色氨酸衍生物類小分子化合物DNMTi,細胞毒性小,通過與DNMT的活性位點非共價結合,阻礙其余 DNA結合,從而降低DNA甲基化水平。Xu等[45]發(fā)現(xiàn)RG108和Scriptaid聯(lián)合使用能顯著促進克隆胚胎中 NANOG基因的轉錄,增強植入前胚胎的發(fā)育潛力,修復體細胞克隆中H19的ICR3位點破裂的印跡DNA甲基化。
2.2 組蛋白去乙酰化酶抑制劑
組蛋白去乙?;?HDAC)一般可以分為 5種類型:ClassⅠ(HDAC1,3和8),ClassⅡa(HDAC4,5,7和9),ClassⅡb(HDAC6和10),ClassⅢ(SIRT1到7)和 ClassⅣ(HDAC11)。TSA、Scriptaid、SAHA和Oxamflatin能抑制 ClassⅠ和 ClassⅡa/b HDAC;APHA能抑制ClassⅠ和ClassⅡa/b,尤其是HDAC3和HDAC6;VPA能抑制ClassⅠ和ClassⅡa;Sirtinol只能抑制ClassⅢ HDAC[46]。
曲古抑菌素A(Trichostatin A, TSA)是第一種被發(fā)現(xiàn)對克隆動物制備有效的小分子化合物,TSA抑制 HDAC的作用從而使染色質處于高度乙酰化狀態(tài),這樣有利于轉錄因子的結合,使基因處于轉錄激活狀態(tài)。研究發(fā)現(xiàn)在牛[47,48]、豬[49]、兔[50]和小鼠[51]中,用HDAC抑制劑TSA處理核移植供體細胞,可以提高克隆胚胎的體外發(fā)育率。用TSA處理重構胚可以提高胚胎中H3K14、H4K12乙?;剑M而提高克隆效率[37]。TSA處理小鼠克隆胚胎后進行連續(xù)克隆,已經(jīng)獲得了25代約500只克隆小鼠,而且克隆效率并沒有逐漸下降[52]。然而,TSA對克隆胚胎有毒性作用,其增強克隆胚胎的重編程的效果取決于不同種系的供體細胞對藥物的敏感度[53]。
Scriptaid是一種人工合成的低毒性HDAC抑制劑,可誘導組蛋白過乙?;?,引起染色體重建,增強細胞內(nèi)的轉錄活性和蛋白質的表達。Van Thuan等[54]利用250 nmol/L Scriptaid處理近交系小鼠克隆胚胎10 h,提高了克隆胚胎的發(fā)育能力,同時成功獲得克隆后代,結束了近交品系小鼠無法克隆的歷史。
Ono等[46]發(fā)現(xiàn),SAHA和Oxamflatin能降低囊胚細胞的細胞凋亡水平,提高克隆小鼠發(fā)育到足月,并能顯著提升核移植胚胎獲得的胚胎干細胞(ntES)的建系效率,而且不會導致明顯的異常。Su等[55]研究發(fā)現(xiàn),Oxamflatin修改了H3K9和H3K18的乙?;癄顟B(tài),提高了囊胚的質量,并且顯著提高了克隆牛胚胎的體外發(fā)育。
丙戊酸(Valproic acid,VPA)是一種短鏈脂肪酸,一直以來被用于治療癲癇,目前發(fā)現(xiàn)VPA可以誘導分化細胞的重編程。Miyoshi等[56]發(fā)現(xiàn)VPA能夠提高小型豬克隆胚胎的體外發(fā)育以及Oct3/4基因的表達。用4 mmol/L的VPA處理24 h,能顯著提高克隆牛胚胎的發(fā)育,提高了 H3K9的乙?;?,因而增強了細胞核重編程[57]。Kim等[58]研究發(fā)現(xiàn)VPA比TSA更有效地提高克隆胚胎的發(fā)育,然而,VPA對提高小鼠的克隆效率的作用甚微,但卻能改善小鼠 SCNT胚胎中Oct4基因的表達以及 K3K27me3的核分布[59]。
Jin等[60]發(fā)現(xiàn),一種新型的廣譜 HDAC抑制劑LBH589(Panobinostat)通過改變表觀遺傳狀態(tài)和基因表達增強核重編程以及SCNT胚胎的發(fā)育潛力,并能提高囊胚的質量。后來,他們又研究發(fā)現(xiàn),1 μmol/L的CUDC-101處理24 h后能顯著提高豬SCNT胚胎的發(fā)育能力,免疫熒光檢測發(fā)現(xiàn),H3K9的乙?;礁哂趯φ战M[61]。
Song等[62]研究發(fā)現(xiàn),一種極性雜合化合物CBHA(m-carboxycinnamic acid bishydroxamide)能提高體細胞克隆豬胚胎的體外發(fā)育能力,提高總體的組蛋白乙?;?,并能修正早期發(fā)育的一些重要基因的表達。Dai等[63]先前也報道了CBHA 能提高小鼠克隆胚胎的發(fā)育能力,并能提高SCNT胚胎建立胚胎干細胞系的效率。
雖然HDAC抑制劑處理能提高克隆效率,但出生動物的存活效率并沒有提高,而且HDAC抑制劑處理提高克隆效率的機制還不是很清楚。但可以推測,HDAC抑制劑可引起核心組蛋白的過乙?;?,導致染色質結構松弛,能夠更容易結合轉錄因子,還能使供體細胞的基因組在核移植后發(fā)生 DNA去甲基化。有報道顯示,用HDAC抑制劑處理能夠提高組蛋白乙?;?、初期mRNA的產(chǎn)生和基因表達,與正常受精胚胎的狀態(tài)相似[64]。
2.3 敲低或敲除Xist基因
對克隆囊胚基因表達譜的分析發(fā)現(xiàn),與體外受精囊胚相比,克隆胚胎X染色體上許多基因的特異性表達下調[29]。X連鎖基因的這種表達抑制與 Xist基因的表達升高相關聯(lián),而Xist是雌性細胞中負責失活其中一條X染色體,RNA原位雜交熒光分析卵裂球細胞核中Xist的mRNA,雄性和雌性克隆胚胎中顯示一個過度的信號,這表明未失活的X染色體上Xist基因的表達異常[64]。當使用Xist敲除的供體細胞用于核移植時,卵丘細胞和支持細胞的克隆出生率分別升高了8倍和14倍[29]。同樣,通過向重構卵母細胞中注射干擾RNA來敲低Xist,克隆出生率提高了大約10倍[65]。因此,敲除或敲低基因可能部分修復X連鎖基因的異常表達,從而提高克隆效率。
體細胞核移植技術具有重要的理論研究和生產(chǎn)價值,可應用于治療性克隆、瀕臨滅絕品種的保護、家畜的品種改良及大量繁殖、轉基因動物生產(chǎn)、人類器官移植和建立疾病模型等研究。然而,隨著誘導多能性胚胎干細胞(Induced pluripotent stem cells, iPS)技術的出現(xiàn),人們的研究重點轉向了 iPS 研究。但是許多研究已經(jīng)證實,iPS 技術誘導獲得的 iPS細胞質量不如體細胞核移植細胞,目前僅有小鼠的iPS 細胞能完全發(fā)育為個體[66,67],而體細胞核移植技術能夠將絕大多數(shù)物種分化的體細胞重編程為多能性干細胞并發(fā)育為個體。因此,體細胞核移植技術仍是研究核重編程機制的一種重要技術手段。
表觀遺傳修飾是核重編程的關鍵,研究發(fā)現(xiàn)DNA甲基轉移酶抑制劑和組蛋白去乙酰化酶抑制劑等能部分修復克隆胚胎異常的表觀遺傳修飾,能提高供體核的重編程。然而,目前使用的大多數(shù)試劑都有一定的毒副作用,因此,進一步研究效率高、毒副作用小的藥物來修復表觀遺傳錯誤將是今后的主要發(fā)展方向之一。核移植后基因印記發(fā)生異常是引起克隆動物死亡的重要原因之一。目前,關于如何防止體細胞核移植后基因印記發(fā)生異常的研究較少,Hikichi等[68]利用孤雌胚胎的胚胎干細胞進行核移植,發(fā)現(xiàn)克隆小鼠的胎盤中印記基因Peg10的表達接近正常水平,說明不同來源的供核細胞對克隆動物的印記基因重編程有一定的影響。
新技術的應用如高通量測序技術有助于發(fā)現(xiàn)克隆胚胎中基因的異常表達[69]。最近,利用轉錄組分析發(fā)現(xiàn)H3K9me3是SCNT有效重編程的一個主要障礙,除去H3K9me3能顯著提高克隆效率[70]??傊S著對表觀遺傳重編程的深入研究,體細胞核移植技術將能更好地應用于基礎研究和生產(chǎn)實踐。
[1] Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810-813.
[2] Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de León FA, Robl JM. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280(5367): 1256-1258.
[3] Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 1998, 394(6691): 369-374.
[4] Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K,Awata T, Hanada H, Perry ACF. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000, 289(5482): 1188-1190.
[5] Shin T, Kraemer D, Pryor J, Liu L, Rugila J, Howe L, Buck S, Murphy K, Lyons L, Westhusin M. A cat cloned by nuclear transplantation. Nature, 2002, 415(6874): 589.
[6] Chesné P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol, 2002, 20(4): 366-369.
[7] Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod, 1998, 3(3): 155-163.
[8] Ono Y, Shimozawa N, Ito M, Kono T. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol Reprod, 2001, 64(1): 44-50.
[9] Chavatte-Palmer P, Heyman Y, Richard C, Monget P, LeBourhis D, Kann G, Chilliard Y, Vigon X, Renard JP. Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol Reprod, 2002, 66(6): 1596-1603.
[10] Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA, 2001, 98(11): 6209-6214.
[11] Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet, 2001, 28(2): 173-177.
[12] Jeanisch R, Eggan K, Humpherys D, Rideout W, Hochedlinger K. Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells, 2002, 4(4): 389-396.
[13] Costa-Borges N, Gonzalez S, Santaló J, Ibá?ez E. Effect of the enucleation procedure on the reprogramming potential and developmental capacity of mouse cloned embryos treated with valproic acid. Reproduction, 2011, 141(6): 789-800.
[14] Wakayama S, Cibelli JB, Wakayama T. Effect of timing of the removal of oocyte chromosomes before or after injection of somatic nucleus on development of NT embryos. Cloning Stem Cells, 2003, 5(3): 181-189.
[15] Enright B, Kubota C, Yang X, Tian XC. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2'-deoxycytidine. Biol Reprod, 2003, 69(3): 896-901.
[16] Kurome M, Hisatomi H, Matsumoto S, Tomii R, Ueno S, Hiruma K, Saito H, Nakamura K, Okumura K, Matsumoto M, Kaji Y, Endo F, Nagashima H. Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer. J Reprod Dev, 2008, 54(4): 254-258.
[17] Kang YK, Park J, Koo DB, Choi YH, Kim SU, Lee KK, Han YM. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J, 2002, 21(5): 1092-1100.
[18] Dean W, Santoa F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA, 2001, 98(24): 13734-13738.
[19] Beaujean N, Taylor J, Garden J, Wilmut I, Meehan R, Young L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod, 2004, 71(1): 185-193.
[20] Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, Hunt DF. Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem, 2007, 282(10): 7641-7655.
[21] Enright BP, Sung LY, Chang CC, Yang X, Tian XC. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine. Biol Reprod, 2005, 72(4): 944-948.
[22] Suteevun T, Parnpai R, Smith SL, Chang CC, Muenthaisong S, Tian XC. Epigenetic characteristics of cloned and in vitro-fertilized swamp buffalo (Bubalus bubalis) embryos. J Anim Sci, 2006, 84(8): 2065-2071.
[23] Bui HT, Van Thuan N, Wakayama T, Miyano T. Chromatin remodeling in somatic cells injected into mature pig oocytes. Reproduction, 2006, 131(6): 1037-1049.
[24] Wang FC, Kou ZH, Zhang Y, Gao SR. Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol Reprod, 2007, 77(6): 1007-1016.
[25] Papp B, Müller J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG protein. Genes Dev, 2006, 20(15): 2041-2054.
[26] Zhang M, Wang FC, Kou ZH, Zhang Y, Gao SR. Defective chromatin structure in somatic cell cloned mouse embryos. J Biol Chem, 2009, 284(37): 24981-24987.
[27] Kalantry S, Purushothaman S, Bowen RB, Starmer J, Magnuson T. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature, 2009, 460(7255): 647-651.
[28] Nolen LD, Gao SR, Han ZM, Mann MRW, Chung YG, Otte AP, Bartolomei MS, Latham KE. X chromosome reactivation and regulation in cloned embryos. Dev Biol, 2005, 279(2): 525-540.
[29] Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N,Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte AP, Tian XC, Yang XZ, Ishino F, Abe K, Ogura A. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 2010, 330(6003): 496-499.
[30] Xue F, Tian XC, Du FL, Kubota C, Taneja M, Dinnyes A, Dai YP, Levine H, Pereira LV, Yang XZ. Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet, 2002, 31(2): 216-220.
[31] Smith SL, Everts RE, Tian XC, Du FL, Sung LY, Rodriguez-Zas SL, Jeong BS, Renard JP, Lewin HA, Yang XZ. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci USA, 2005, 102(49): 17582-17587.
[32] Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R. Epigenetic instability in ES cells and cloned mice. Science, 2001, 293(5527): 95-97.
[33] Constancia M, Pickard B, Kelsey G, Reik W. Imprinting mechanisms. Genome Res, 1998, 8(9): 881-900.
[34] Han DW, Song SJ, Uhum SJ, Do JT, Kim NH, Chung KS, Lee HT. Expression of IGF2 and IGF receptor mRNA in bovine nuclear transferred embryos. Zygote, 2003, 11(3): 245-252.
[35] Inoue K, Kohda T, Lee J, Ogonuki N, Mochida K, Noguchi Y, Tanemura K, Kaneko-Ishino T, Ishino F, Ogura A. Faithful expression of imprinted genes in cloned mice. Science, 2002, 295(5553): 297.
[36] Yang L, Chavatte-Palmer P, Kubota C, O’Neill M, Hoagland T, Renard JP, Taneja M, Yang XZ, Tian XC. Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones. Mol Reprod Dev, 2005, 71(4): 431-438.
[37] Wei YC, Zhu J, Huan YJ, Liu ZF, Yang CR, Zhang XM, Mu YS, Xia P, Liu ZH. Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets. Cell Reprogram, 2010, 12(2): 213-222.
[38] Blackburn EH. The telomere and telomerase: nucleic acid-protein complexes acting in a telomere homeostasis system. A review. Biochemistry, 1997, 62(11): 1196-1201.
[39] Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I, Colman A, Schnieke AE. Analysis of telomere lengths in cloned sheep. Nature, 1999, 399(6734): 316-317.
[40] Jeon HY, Hyun SH, Lee GS, Kim HS, Kim S, Jeong YW, Kang SK, Lee BC, Han JY, Ahn C, Hwang WS. The analysis of telomere length and telomerase activity in cloned pigs and cows. Mol Reprod Dev, 2005, 71(3): 315-320.
[41] Miyashita N, Shiga K, Yonai M, Kaneyama K, Kobayashi S, Kojima T, Goto Y, Kishi M, Aso H, Suzuki T, Sakaguchi M, Nagai T. Remarkable differences in telomere lengths among cloned cattle derived from ent cell types. Biol Reprod, 2002, 66(6): 1649-1655.
[42] Niemann H, Tian XC, King WA, Lee RS. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction, 2008, 135(2): 151-163.
[43] Jafari S, Hosseini MS, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, Ostadhosseini S, Abbasi H, Gourabi H, Shahverdi AH, Dizaj AV, Anjomshoaa M, Haron W, Noorshariza N, Yakub H, Nasr-Esfahani MH. Improved in vitro development of cloned bovine Embryos using S-adenosylhomocysteine, a non-toxic epigenetic modifying reagent. Mol Reprod Dev, 2011, 78(8): 576-584.
[44] Wang YS, Xiong XR, An ZX, Wang LJ, Liu J, Quan FS, Hua S, Zhang Y. Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2'-deoxycytidine and trichostatin A. Theriogenology, 2011, 75(5): 819-825.
[45] Xu WH, Li ZC, Yu B, He XY, Shi JS, Zhou R, Liu DW, Wu ZF. Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer. PLoS ONE, 2013, 8(5): e64705.
[46] Ono T, Li C, Mizutani E, Terashita Y, Yamagata K, Wakayama T. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biol Reprod, 2010, 83(6): 927-937.
[47] Akagi S, Matsukawa K, Mizutani E, Fukunari K, Kaneda M, Watanabe S, Takahashi S. Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos. J Reprod Dev, 2011, 57(1): 120-126.
[48] Lee MJ, Kim SW, Lee HG, Im GS, Yang BC, Kim NH, Kim DH. Trichostatin A promotes the development of bovine somatic cell nuclear transfer embryos. J Reprod Dev, 2011, 57(1): 34-42.
[49] Yamanaka K, Sugimura S, Wakai T, Kawahara M, Sato E. Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J Reprod Dev, 2009, 55(6): 638-644.
[50] Meng QG, Polgar Z, Liu J, Dinnyes A. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells, 2009, 11(1): 203-208.
[51] Kishigami S, Mizutani E, Ohta H, Hikichi T, Van Thuan N, Wakayama S, Bui HT, Wakayama T. Significant improvement of mouse cloning technique by treatment withtrichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun, 2006, 340(1): 183-189.
[52] Wakayama T, Kohda T, Obokata H, Tokoro M, Li C, Terashita Y, Mizutani E, Nguyen VT, Kishigami S, Ishino F, Wakayama T. Successful Serial Recloning in the mouse over multiple generations. Cell Stem Cell, 2013, 12(3): 293-297.
[53] Wakayama S, Wakayama T. Improvement of mouse cloning using nuclear transfer-derived embryonic stem cells and/or histone deacetylase inhibitor. Int J Dev Biol, 2010, 54(11-12): 1641-1648.
[54] Van Thuan N, Bui HT, Kim JH, Hikichi T, Wakayama S, Kishigami S, Mizutani E, Wakayama T. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction, 2009, 138(2): 309-317.
[55] Su JM, Wang YS, Li YY, Li RZ, Li Q, Wu YY, Quan FS, Liu J, Guo ZK, Zhang Y. Oxamflatin significantly improves nuclear reprogramming, blastocyst quality, and in vitro development of bovine SCNT embryos. PLoS ONE, 2011, 6(8): e23805.
[56] Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yoshida M, Sato M. Valproic acid enhances in vitro development and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos. Cell Reprogram, 2010, 12(1): 67-74.
[57] Xu W, Wang Y, Li Y, Wang L, Xiong X, Su J, Zhang Y. Valproic acid improves the in vitro development competence of bovine somatic cell nuclear transfer embryos. Cell Reprogram, 2012, 14(2): 138-145.
[58] Kim YJ, Ahn KS, Kim M, Shim H. Comparison of potency between histone deacetylase inhibitors trichostatin A and valproic acid on enhancing in vitro development of porcine somatic cell nuclear transfer embryos. In Vitro Cell Dev Biol Anim, 2011, 47(4): 283-289.
[59] Isaji Y, Murata M, Takaguchi N, Mukai T, Tajima Y, Imai H, Yamada M. Valproic acid treatment from the 4-cell stage improves Oct4 expression and nuclear distribution of histone H3K27me3 in mouse cloned blastocysts. J Reprod Dev, 2013, 59(2): 196-204.
[60] Jin JX, Li S, Gao QS, Hong Y, Jin L, Zhu HY, Yan CG, Kang JD, Yin XJ. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer. Theriogenology, 2013, 80(6): 630-635.
[61] Jin JX, Li S, Hong Y, Jin L, Zhu HY, Guo Q, Gao QS, Yan CG, Kang JD, Yin XJ. CUDC-101, a histone deacetylase inhibitor, improves the in vitro and in vivo developmental competence of somatic cell nuclear transfer pig embryos. Theriogenology, 2014, 81(4): 572-578.
[62] Song YR, Hai T, Wang Y, Guo R, Li W, Wang L, Zhou Q. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor-m-carboxycinnamic acid bishydroxamide (CBHA). Protein Cell, 2014, 5(5): 382-393.
[63] Dai XP, Hao J, Hou XJ, Hai T, Fan Y, Yu Y, Jouneau A, Wang L, Zhou Q. Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. J Biol Chem, 2010, 285(40): 31002-31010.
[64] Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Phil Trans R Soc Lond B Biol Sci, 2013, 368(1609): 20110329.
[65] Matoba S, Inoue K, Kohda T, Sugimoto M, Mizutani E, Ogonuki N, Nakamura T, Abe K, Nakano T, Ishino F, Ogura A. RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci USA, 2011, 108(51): 20621-20626.
[66] Zhou W, Wang K, Ruan W, Bo Z, Liu L, Cao Z, Chai L, Cao G. Higher methylation in genomic DNA indicates incomplete reprogramming in induced pluripotent stem cells. Cell Reprogram, 2013, 15(1): 92-99.
[67] Ma H, Morey R, O'Neil RC, He Y, Daughtry B, Schultz MD, Hariharan M, Nery JR, Castanon R, Sabatini K, Thiagarajan RD, Tachibana M, Kang E, Castanon R, Sabatini K, Thiagarajan RD, Tachibana M, Kang E, Tippner-Hedges R, Ahmed R, Gutierrez NM, Van Dyken C, Polat A, Sugawara A, Sparman M, Gokhale S, Amato P, Wolf DP, Ecker JR, Laurent LC, Mitalipov S. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 2014, 511(7508): 177-183.
[68] Hikichi T, Ohta H, Wakayama S, Wakayama T. Functional full-term placentas formed from parthenogenetic embryos using serial nuclear transfer. Development, 2010, 137(17): 2841-2847.
[69] Okae H, Matoba S, Nagashima T, Mizutani E, Inoue K, Ogonuki N, Chiba H, Funayama R, Tanaka S, Yaegashi N, Nakayama K, Sasaki H, Ogura A, Arima T. RNA sequencing-based identification of aberrant imprinting in cloned mice. Hum Mol Genet, 2014, 23(4): 992-1001.
[70] Matoba S, Liu YT, Lu FL, Iwabuchi KA, Shen L, Inoue A, Zhang Y. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 2014, 159(4):1-12.
(責任編委: 方向東)
Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions
Huili Ji1,2, Shengsheng Lu1, Dengke Pan1
1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
2. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Somatic cell nuclear transfer (SCNT) is a technology by which a highly differentiated somatic nucleus is transferred into an enucleated oocyte to generate a reconstructed embryo that subsequently develops to an offspring. However, to date, the efficiency of cloned animal is still low. The major reason is incomplete nuclear reprogramming of donor cells after nuclear transfer, which results in abnormal epigenetic modifications, including DNA methylation, histone acetylation, gene imprinting, X-chromosome inactivation, and telomere length. Most improvements have been made in somatic epigenetic reprogramming with small molecules and manipulating expression of specific genes. It is expected that SCNT will soon have broad applications in both basic research and practical production. In this review, we summarize the recent progress in epigenetic reprogramming by somatic cell nuclear transfer; in particular, we focus on strategies for rescuing the epigenetic errors occurring during SCNT.
2014-07-17;
2014-09-19
轉基因生物新品種培育重大專項(編號:2014ZX0800605B)和國家高技術研究發(fā)展計劃(863計劃)項目(編號:2012AA020601)資助
紀慧麗,碩士研究生,專業(yè)方向:動物胚胎生物技術。E-mail: jihuili1989@163.com
潘登科,博士,副研究員,研究方向:動物胚胎生物技術。E-mail: pandengke2002@163.com
盧晟盛,博士,研究員,博士生導師,研究方向:動物繁殖生物技術。E-mail: sslu@gxu.edu.cn
10.3724/SP.J.1005.2014.1211
時間: 2014-10-10 16:09:38
URL: http://www.cnki.net/kcms/detail/11.1913.R.20141010.1609.001.html