李園園,郭磊,盧晟盛,韓之明
1. 廣西大學動物科學技術(shù)學院,南寧 530004;
2. 中國科學院動物研究所,計劃生育生殖生物學國家重點實驗室,北京 100101
甲狀旁腺激素樣激素在胚胎發(fā)育中的作用
李園園1,2,郭磊2,盧晟盛1,韓之明2
1. 廣西大學動物科學技術(shù)學院,南寧 530004;
2. 中國科學院動物研究所,計劃生育生殖生物學國家重點實驗室,北京 100101
甲狀旁腺激素樣激素(Parathyroid hormone-like hormone, PTHLH)又稱為甲狀旁腺激素相關(guān)蛋白(Parathyroid hormone-related protein, PTHrP),發(fā)現(xiàn)初期被認為是引起人類惡性腫瘤伴發(fā)的高鈣血癥的主要原因。進一步的研究發(fā)現(xiàn),PTHLH在不同物種的多種成體和胎兒組織中均有表達,其生物學作用涉及形態(tài)發(fā)生、細胞生長與分化的調(diào)控、胎盤鈣的轉(zhuǎn)運等多個方面。文章主要綜述了PTHLH的生物學特性及其在胚胎發(fā)育過程中的作用,并進一步探討了涉及的信號通路及可能的作用機制。
甲狀旁腺激素樣激素;胚胎發(fā)育;信號通路
甲狀旁腺激素樣激素(Parathyroid hormone-like hormone, PTHLH)首次發(fā)現(xiàn)于20世紀80 年代,被認為是引起惡性腫瘤伴發(fā)的體液高鈣血癥的主要原因[1,2]。1990年,Moniz等[3]首次在正常人胎兒發(fā)育中發(fā)現(xiàn)有PTHLH的表達。研究證明,與甲狀旁腺激素(Parathyroid hormone,PTH)不同,PTHLH存在于多種胎兒組織和成年組織中,參與骨骼、皮膚、毛囊、牙齒、乳腺、胰腺、肺和腎臟等組織器官的發(fā)育。PTHLH的生物學功能涉及形態(tài)發(fā)生、細胞生長與分化的調(diào)控、胎盤鈣的轉(zhuǎn)運等多個方面[4,5]。本文就 PTHLH的生物學特性及其在胚胎發(fā)育過程中的生物學功能進行了綜述,并對PTHLH的信號通路及可能的作用機制進行了探討。
人類PTH和PTHLH基因定位在第11號和12號染色體的短臂上,這兩個基因可能是由同一祖基因演化而來,通過對不同物種的研究發(fā)現(xiàn)人類PTHLH基因是最復雜的[5]。PTHLH由3個啟動子和9個外顯子組成,由于前體mRNA的選擇性剪切方式不同,可得到139、141、173個氨基酸的3種氨基端相同而羧基端不同的 pre-pro-PTHLH。這 3種PTHLH分子與PTH高度同源,二者的第1~13位氨基酸中有8個相同。大鼠(Rattus norvegicus)和小鼠(Mus musculus)的Pthlh基因有5個外顯子,分別編碼141和139個氨基酸的異構(gòu)體。原始的PTHLH可由激素原轉(zhuǎn)化酶家族加工后,形成至少 3種與PTHLH作用相關(guān)的成熟分泌肽段。氨基端1~36肽段含有與PTH相似的片段和序列信息,在鈣離子運輸和平滑肌舒張上存在相似的作用。研究發(fā)現(xiàn),雞(Gallus domestiaus)和非洲爪蟾(Xenopus laevis)的PTHLH(1~34)可分別通過尿囊絨毛膜和腹部皮膚參與鈣離子的調(diào)控[6]。PTHLH中段有促進跨胎盤鈣離子和鎂離子轉(zhuǎn)運的功能,PTHLH(67~86)可抑制有絲分裂,刺激人乳腺癌的轉(zhuǎn)移潛能,在8701-BC細胞系上抑制生長和促進浸潤[7],進一步研究發(fā)現(xiàn)用PTHLH(67~86)對 8701-BC細胞系處理與熱休克因子結(jié)合蛋白1(Heat shock factor binding protein, HSBP1)的上調(diào)有關(guān),hsbp1可編碼與熱休克因子1(Heat shock factor, HSF1)相互作用的因子并對HSF1活性進行負調(diào)控,推斷PTHLH這個中間片段可能與基因的表達有關(guān)[8]。PTHLH(67~94)與importin β和GTP-Ran相互作用促進 PTHLH進入細胞核內(nèi)[9,10]。PTHLH (87~107)含有 NLS序列,有抑制凋亡[11,12]和介導細胞表面附著、內(nèi)吞作用、RNA結(jié)合、核糖體生物合成等功能[13,14]。PTHLH(109~139)是一個富亮氨酸序列,與該蛋白的核輸出有關(guān)[15]。PTHLH的細胞膜受體是PTH/PTHLH受體(Parathyroid hormone 1 receptor,PTH1R),目前認為PTH和PTHLH均可通過這一受體發(fā)揮功能。
Senior等[16]利用原位雜交方法研究大鼠的胚胎植入及整個妊娠期Pthlh基因的表達,在植入后懷孕早期的大鼠滋養(yǎng)層細胞發(fā)現(xiàn)Pthlh mRNA,并且在胎兒的支氣管上皮、毛囊、牙板、皮膚角質(zhì)細胞、骨骼早期的軟骨細胞膜均有Pthlh mRNA的表達。免疫組織化學檢測表明,PTHLH在人類胎兒的平滑肌、心肌及多處骨組織形成地方的上皮細胞中均有表達[17]。對魚的研究發(fā)現(xiàn),皮膚、腎臟、骨骼肌、鰓、神經(jīng)索和腦垂體以及在發(fā)育的軟骨魚類的膚齒和直腸腺中都有pthlh mRNA的表達[18]。在雞和非洲爪蟾中也發(fā)現(xiàn)了 pthlh mRNA 的廣泛表達[6]。在斑馬魚(Danio rerio)的基因組中含有人PTHLH的兩個同源基因pthlha與pthlhb,結(jié)構(gòu)分析發(fā)現(xiàn)Pthlha在N末端、中間片段、NLS/RNA結(jié)合部分和C末端部分有很大的保守性,與人的PTHLH相似。Pthlha在組織中分布廣泛,在發(fā)育中的牙齒、胰腺、脊髓、骨和軟骨中都有表達[19]。
2.1 PTHLH在組織器官發(fā)育中的作用
Suda等[20]發(fā)現(xiàn),Pthlh基因缺陷小鼠的髁突軟骨的體積比野生型的小,但其組織學結(jié)構(gòu)及細胞分化的層次依然存在,說明Pthlh的突變造成軟骨細胞增殖減少,影響了軟骨內(nèi)成骨的進程從而導致髁突體積減小。但是,在長骨發(fā)育過程中,Pthlh基因的功能障礙,致使正常軟骨的組織學結(jié)構(gòu)及細胞分化的層次紊亂,軟骨內(nèi)成骨作用受到干擾,導致長骨發(fā)育的異常。另外有研究表明,Pthlh(-/-)小鼠表現(xiàn)出軟骨發(fā)育不良、軟骨細胞分化加速、胎兒期小鼠死亡[21],而過表達Pthlh或持續(xù)激活PTH1R的小鼠明顯抑制肥大軟骨細胞的分化[22],因此可以判斷Pthlh是通過促進增殖區(qū)軟骨細胞增殖并抑制其轉(zhuǎn)變?yōu)榉蚀髤^(qū)軟骨細胞而增加柱狀軟骨區(qū)的長度,說明Pthlh基因在軟骨內(nèi)成骨作用中起重要的作用。
許多研究表明PTHLH在發(fā)育的腎臟中存在,主要在集合小管和膀胱上皮[17]。Escande等[4]發(fā)現(xiàn),在人腎臟成熟過程中PTHLH mRNA表達量高,在集合管、膀胱上皮和未成熟結(jié)構(gòu)包括S-小體、腎原基及腎小球均有表達。而PTH1R mRNA在成熟過程中的腎臟比成熟后的腎臟表達量低,但在16日齡的胚胎和新生小鼠的集合管、膀胱上皮和腎發(fā)生區(qū)沒有表達[23]。在大鼠出生后的發(fā)育過程中,PTHLH對腎臟有劑量依賴性舒張血管的作用。研究發(fā)現(xiàn),PTHLH對腎血管擴張作用的信號轉(zhuǎn)導涉及了腺苷酸環(huán)化酶/PKA途徑[24]和L-精氨酸/NO途徑[25,26]。PTHLH是一種通過與近球細胞的直接作用將腎素從離體灌注的腎臟中釋放出來的一種很強的刺激因素[27,28]。在麻醉大鼠的腎臟內(nèi)灌注PTHLH可以增加腎血流量、腎小球濾過率和尿量[26]。此外,PTHLH通過自分泌或旁分泌的方式參與腎損傷的修復,還可參與控制腎血流動力學,尤其在妊娠期間[4]。
另外,有研究表明PTHLH在皮膚、毛發(fā)和牙齒的發(fā)育中起重要作用[29]。PTHLH調(diào)節(jié)表皮細胞的增殖和分化,還可與間質(zhì)細胞發(fā)生相互作用,小鼠皮膚中過表達PTHLH會影響毛囊發(fā)育[30]。
PTHLH在胎兒的肺臟發(fā)育中也發(fā)揮重要的作用。Pthlh(-/-)小鼠胎兒的肺臟中出現(xiàn)間充質(zhì)-上皮間的相互作用延遲、II型細胞分化受抑制、表面活性劑層狀體形成和表面活性劑的產(chǎn)生減少,證明PTHLH作為一種內(nèi)源性調(diào)節(jié)因子在哺乳動物的肺泡發(fā)育中具有重要的作用[31]。另外在新生兒的氣管分泌物中可以檢測到PTHLH,其與胎兒成熟的多項指標有關(guān)[32]。此外,在小鼠肺發(fā)育中,囊性纖維化跨膜傳導調(diào)節(jié)因子(Cystic fibrosis transmembrane conductance regulator,CFTR)的表達水平與PTHLH的水平直接相關(guān),cftr下調(diào)導致 Pthlh的表達量下降,而cftr的過表達導致Pthlh表達量顯著增加,進而實現(xiàn)對肺發(fā)育的調(diào)節(jié)[33]。
通過構(gòu)建在胰島上過表達 Pthlh的轉(zhuǎn)基因小鼠研究PTHLH在胰島中的作用,結(jié)果顯示Pthlh在胰島的過表達會導致胰島增生、高胰島素血癥和低血糖癥[34]。
在乳腺發(fā)育過程中,PTHLH(1~84)敲除小鼠存在間充質(zhì)分化和乳腺導管增生的缺陷。進一步研究發(fā)現(xiàn),乳芽分泌的Pthlh mRNA水平嚴重下降,推測可能是由于乳腺上皮細胞分泌的 PTHLH不足引起的發(fā)育缺陷[35]。
2.2 PTHLH在圍產(chǎn)期的作用
通過對妊娠大鼠的研究發(fā)現(xiàn),在妊娠的子宮肌層中存在Pthlh,當宮腔增大、子宮肌肉伸展時Pthlh mRNA的表達量增加,分娩后下降[36]。研究還發(fā)現(xiàn),PTHLH可以抑制子宮平滑肌收縮,以利于受精卵的著床,維持妊娠[37]。
免疫組化研究發(fā)現(xiàn),PTHLH存在于人胎盤的合體細胞中,在臍帶的血管平滑肌和內(nèi)皮細胞中表達。進一步研究發(fā)現(xiàn),在臍帶血管中還有PTH1R mRNA的表達,且在胎盤附著處羊膜的表達明顯高于胎盤外的羊膜。由此可以推測PTHLH可能在維持子宮平滑肌以及其他血管平滑肌(包括臍帶血管)的舒張方面具有一定作用[38]。
PTHLH可促進小鼠胎盤中鈣沉積和骨骼礦化,調(diào)節(jié)胎盤血鈣濃度梯度來維持妊娠,在切除甲狀旁腺或敲除Pthlh后無法形成胎盤鈣轉(zhuǎn)運梯度[39]。
在乳腺的發(fā)育過程中,PTHLH是必不可少的。敲除Pthlh或其受體,乳房芽的發(fā)育幾乎完全停止,而過表達 Pthlh的轉(zhuǎn)基因小鼠乳房芽的分支發(fā)生改變[4]。
El-Hashash等[40]研究發(fā)現(xiàn),在小鼠體外滋養(yǎng)層巨細胞(Trophoblast giant cells,TGC)分化過程中,PTHLH誘導肌動蛋白支架重組和下調(diào)E-鈣黏蛋白,同時也改變了細胞骨架調(diào)節(jié)因子Eph/Ephrin的表達和磷酸化作用以及RhoGTP酶的表達。結(jié)果表明,PTHLH具有刺激滋養(yǎng)層細胞分化的作用,且PTHLH可能通過EphB2/EphrinB和RhoA信號分子發(fā)出信號以誘導滋養(yǎng)層的分化。
在研究雞和非洲爪蟾的PTHRs轉(zhuǎn)錄產(chǎn)物在組織中的分布發(fā)現(xiàn),PTH1R在成體組織和發(fā)育中的腦、翅膀、腿、雞胚以及尿囊絨毛膜中都有表達。雞的PTHLH轉(zhuǎn)錄產(chǎn)物廣泛表達且不同亞型PTHLH轉(zhuǎn)錄物具有不同的組織分布,暗示了它們可能具有不同的功能[6]。
2.3 PTHLH在著床前胚胎發(fā)育中的作用
盡管許多研究表明 PTHLH在多種組織中發(fā)揮著多種功能,但很少有對PTHLH在早期胚胎發(fā)育過程中的表達特性和生物學功能的研究。Van de Stolpe等[41]報道了 PTHLH對小鼠早期胚胎頂葉內(nèi)胚層分化的誘導作用,是最早的關(guān)于激素受體系統(tǒng)影響早期胚胎發(fā)育的報道,但是該研究沒有開展PTHLH除分化外其他功能的研究。此后,Watson等[42]在無血清卵母細胞成熟液中加入人或大鼠的PTHLH(1~141),使體外培養(yǎng)的牛胚胎囊胚形成率劑量依賴性地升高。而Nowak等[43]使用含PTHLH(1~34)和PTHLH(1~141)的培養(yǎng)液培養(yǎng)小鼠胚胎,發(fā)現(xiàn)小鼠胚胎的囊胚形成率并沒有得到提高。這兩項報道均是研究外源性的PTHLH在著床前胚胎發(fā)育中的作用。2012年,Guo等[44]首次報道了內(nèi)源性的 PTHLH在著床前胚胎發(fā)育中的作用。研究結(jié)果顯示,Pthlh在各發(fā)育階段的著床前胚胎中均有表達,RNA干擾介導的Pthlh缺失顯著影響了小鼠胚胎的囊胚發(fā)育率,通過在培養(yǎng)液中添加外源PTHLH可以糾正這個影響。研究還證明了 Pthlh表達水平的下調(diào)降低了胚胎的多能性基因Oct4和Nanog的表達水平和蛋白水平,也改變了組蛋白乙?;哪J健rbach等[45]的研究也證明Pthlh在小鼠早期胚胎發(fā)育的各階段均有表達,PTH1R從桑葚胚期開始表達,并進一步證明了PTHLH在小鼠著床前胚胎中的定位與囊胚的孵化相關(guān)。
PTHLH和 PTH均可通過 PTH1R發(fā)揮功能。1988年,Jüppner等[46]發(fā)現(xiàn)PTH和PTHLH可結(jié)合相同的受體,之后從ROS 17/2.8細胞中成功分離出編碼大鼠骨的PTH/PTHLH受體的一種cDNA克隆,并發(fā)現(xiàn)PTH/PTHLH受體基因在哺乳動物高度保守,與一些G蛋白偶聯(lián)受體具有顯著同源性[47]。研究表明,PTH1R屬G蛋白偶聯(lián)受體超家族中的B亞族,可與Gs、Gq/11、Gi/o和G12/13等結(jié)合。研究發(fā)現(xiàn),PTH/ PTHLH有3種受體,即PTH1R、PTH2R和PTH3R,不同物種的PTH/PTHLH受體是有差異的[48]。
激活的PTH1R可以激活很多胞內(nèi)信號分子如2型 G蛋白信號級聯(lián)、腺苷酸環(huán)化酶(AC)、磷脂酶C(PLC)、cAMP、三磷酸肌醇(IP3)、二酰甘油(DG)和Ca2+[47]。另外,Mahon等[49]發(fā)現(xiàn)PTH1R細胞質(zhì)內(nèi)的部分可以以一種鈣依賴型方式通過1-5-8-14基序與鈣調(diào)蛋白相互作用,而這種鈣依賴型鈣調(diào)蛋白可與PTH2R受體細胞質(zhì)內(nèi)的部分、血管活性腸肽、垂體腺苷酸環(huán)化酶激活肽、促腎上腺皮質(zhì)激素釋放激素、降鈣素和胰高血糖素樣多肽1和2相互作用。通過鈣調(diào)蛋白抑制劑——羥哌氟丙嗪處理可以增加磷酸肌醇積累,說明鈣調(diào)蛋白可以通過PLC調(diào)節(jié)信號作用。
PTHLH可以使分化的成骨細胞發(fā)生G1期停滯,PTHLH通過上調(diào)Jun B來減少細胞周期蛋白D1的表達。單獨使用PTHLH處理MC3T3細胞可顯著抑制細胞周期蛋白 D1的表達,若用 PKC抑制劑或cAMP抑制劑進行預處理后,這種抑制作用被減弱,而 PKA抑制劑則沒有顯示出有此功能。若用MAPK的抑制劑處理,少量就可顯著抑制細胞周期蛋白D1的表達,這與PTHLH在分化的MC3T3細胞上對細胞周期蛋白D1的抑制作用相似。這些結(jié)果表明在分化的成骨細胞中,細胞周期蛋白D1的表達依賴于MAPK途徑,PTHLH抑制細胞周期蛋白D1的表達依賴于cAMP和PKC途徑,而不依賴PKA。進一步的研究發(fā)現(xiàn),PTHLH在分化的成骨細胞中可以下調(diào) MAPK的表達,因此 PTHLH可通過抑制MAPK/ERK的磷酸化達到對細胞周期蛋白D1表達的抑制,最終導致分化的成骨細胞生長停滯[50]。然而,在增殖的成骨細胞中發(fā)現(xiàn),PTHLH可誘導ERK的磷酸化和細胞周期蛋白D1的表達,從而促進了細胞的增殖[51]。而且在增殖的成骨細胞中 PTHLH誘導細胞周期蛋白D1的表達依賴于PKA和MAPK。這兩項在成骨細胞上的研究結(jié)果說明了 PTHLH在成骨細胞 ERK/MAPK信號通路中的作用取決于細胞所處的狀態(tài)。
另外,研究發(fā)現(xiàn)cAMP可以促進某些類型細胞的增殖,又可抑制其他類型細胞的增殖[52]。同時,PKC也顯示出在增殖、分化和細胞死亡的許多生理過程中起重要作用,在許多不同的細胞模型上顯示了負的生長調(diào)控作用[53]。目前,研究證明在造骨細胞和軟骨細胞中PTHLH可通過cAMP、PKC、ERK/ MAPK、PKA 和HDAC4/MEF2信號通路[54]發(fā)揮作用。
在小鼠乳腺發(fā)育中,間質(zhì)上皮細胞分泌的PTHLH通過一個Wnt信號受體——TOPGAL-C調(diào)控Wnt/β-連環(huán)蛋白信號,Wnt信號通過引起多個間質(zhì)受體的表達,從而影響乳腺的進一步發(fā)育[55]。另有研究發(fā)現(xiàn),在乳腺形成過程中,PTHLH通過激活BMP和Wnt級聯(lián)放大誘導間質(zhì)細胞的分化和增殖。由于乳腺管的發(fā)生是由乳腺間質(zhì)細胞引起的,導致Pthlh-/-和Pth1r-/-胚胎的管狀系統(tǒng)嚴重發(fā)育不良,且乳頭不能誘導形成,致使第14 d的雄性Pthlh(1~84)敲除小鼠與同齡的雌性小鼠的乳芽相似[35]。
肺組織的發(fā)育依賴于 Shh信號、Wnt/β連環(huán)蛋白信號和PTHLH。Torday等[56]通過對大鼠胎兒肺組織發(fā)育的研究發(fā)現(xiàn),PTHLH或 cAMP可下調(diào)Shh/Wnt/β-連環(huán)蛋白信號,并刺激纖維原細胞和 II型細胞的分化。
在斑馬魚的研究中發(fā)現(xiàn),sox9a或sox9b的突變造成軟骨中pthlha的表達量減少,而sox9a和sox9b的雙突變造成 pthlha的表達量顯著下降。在 pthlha和pthlhb的敲除胚胎中,sox9a和sox9b在發(fā)育顱骨中的表達量顯著降低,runx2a的表達量顯著增加,從而造成過早的骨礦化。研究結(jié)果證明了 pthlhs可通過soxa/soxb和runx2a在胚胎發(fā)育中起作用[19]。
Chuykin等[57]研究發(fā)現(xiàn),由 GSK3(Glycogen synthase kinese-3)的抑制劑CHIR或β-連環(huán)蛋白引起Wnt/BMP4信號通路的激活導致大鼠XEN(Extraembryonic endoderm)細胞出現(xiàn) VE(Visceral endoderm)樣特征,而且cAMP依賴性信號途徑的激活可以抑制這個過程。而毛猴素引起的cAMP途徑的激活導致PE(Parietal endoderm)標記基因表達增加、絲狀偽足的形成以及Pthlh的表達,同時引起snail的表達上調(diào)與EMT(Epithelial mesenchymal transition)的產(chǎn)生。因此得出,Wnt/BMP4信號通路的激活促使大鼠XEN細胞分化為VE細胞,而Pthlh/cAMP通路的激活誘導EMT和PE的形成。
PTHLH存在于包括皮膚、腦、胰腺、腎上腺、平滑肌、心、肺、泌乳乳房、子宮、卵巢及胎盤等多種成年組織中,以及包括骨骼、腦、腎、肺、心、肝、小腸、皮膚和骨骼肌等多種胎兒組織中,生物學功能涉及形態(tài)發(fā)生、細胞生長與分化的調(diào)控、胎盤鈣的轉(zhuǎn)運等多個方面。研究表明PTHLH通過多種信號通路在胚胎發(fā)育過程中發(fā)揮了重要的作用,但是對于PTHLH在胚胎發(fā)育中的作用機制,尤其是在著床前胚胎發(fā)育中的作用機制尚未闡明,有待于進一步的深入研究。
[1] Moseley JM, Kubota M, Diefenbach-Jagger H, Wettenhall RE, Kemp BE, Suva LJ, Rodda CP, Ebeling PR, Hudson PJ, Zajac JD. Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci USA, 1987, 84(14): 5048-5052.
[2] Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H, Rodda CP, Kemp BE, Rodrigue H, Chen EY. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science, 1987, 237(4817): 893-896.
[3] Moniz C, Burton PBJ, Malik AN, Dixit M, Banga JP, Nicolaides K, Quirke P, Knight DE, McGregor AM. Parathyroid hormone-related peptide in normal human fetal development. J Mol Endocrinol, 1990, 5(3): 259-266.
[4] Escande B, Lindner V, Massfelder T, Helwig JJ, Simeoni U. Developmental aspects of parathyroid hormone-related protein biology. Semin Perinatol, 2001, 25(2): 76-84.
[5] Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC, Weir EC, Broadus AE, Stewart AF. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev, 1996, 76(1): 127-173.
[6] Pinheiro PL, Cardoso JC, Gomes AS, Fuentes J, Power DM, Canário AV. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken. BMC Evol Biol, 2010, 10: 373.
[7] Luparello C, Burtis WJ, Raue F, Birch MA, Gallagher JA. Parathyroid hormone-related peptide and 8701-BC breast cancer cell growth and invasion in vitro: evidence for growth-inhibiting and invasion-promoting effects. Mol Cell Endocrinol, 1995, 111(2): 225-232.
[8] LuparelloC, Sirchia R, Pupello D. PTHrP(67-86) regulates the expression of stress proteins in breast cancer cells inducing modifications in urokinase-plasminogen activator and MMP-1 expression. J Cell Sci, 2003, 116(12): 2421-2430.
[9] Lam MHC, Briggs LJ, Hu W, Martin TJ, Gillespie MT, Jans DA. Importinβrecognizes parathyroid hormone-related protein with high affinity and mediates its nuclear import in the absence of importin α. J Biol Chem, 1999, 274(11): 7391-7398.
[10] Lam MH, Hu W, Xiao CY, Gillespie MT, Jans DA. Molecular dissection of the importin beta1-recognized nuclear targeting signal of parathyroid hormone-related protein. Biochem Biophys Res Commun, 2001, 282(2): 629-634.
[11] Henderson JE, Amizuka N, Warshawsky H, Biasotto D, Lanske BM, Goltzman D, Karaplis AC. Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promoteapoptotic cell death. Mol Cell Biol, 1995, 15(8): 4064-4075.
[12] de Miguel F, Fiaschi-Taesch N, Lopez-Talavera JC, Takane KK, Massfelder T, Helwig JJ, Stewart AF. The C-terminal region of PTHrP, in addition to the nuclear localization signal, is essential for the intracrine stimulation of proliferation in vascular smooth muscle cells. Endocrinology, 2001, 142(9): 4096-4105.
[13] Aarts M, Guo R, Bringhurst R, Henderson JE. The Nucleolar Targeting Signal(NTS) of parathyroid hormone related proteinmediate endocytosis and nucleolar translocation. J Bone Miner Res, 1999, 14(9): 1493-1503.
[14] Aarts MM, Levy D, He B, Stregger S, Chen T, Richard S, Henderson JE. Parathyroid hormone related protein interacts with RNA. J Biol Chem, 1999, 274(8): 4832-4838.
[15] Pache JC, Burton DW, Deftos LJ, Hastings RH. A carboxyl leucine-rich region of parathyroid hormone-related protein is critical for nuclear export. Endocrinology, 2006, 147(2): 990-998.
[16] Senior PV, Heath DA, Beck F. Expression of parathyroid hormone-related protein mRNA in the rat before birth: demonstration by hybridization histochemistry. J Mol Endocrinol, 1991, 6(3): 281-290.
[17] Moseley JM, Hayman JA, Danks JA, Alcorn D, Grill V, Southby J, Horton MA. Immunohistochemical detection of parathyroid hormone-related protein in human fetal epithelia. J Clin Endocrinol Metab, 1991, 73(3): 478-484.
[18] Trivett MK, Officer RA, Clement JG, Walker TI, Joss JM, Ingleton PM, Martin TJ, Danks JA. Parathyroid hormone-related protein (PTHrP) in cartilaginous and bony fish tissues. J Exp Zool, 1999, 284(5): 541-548.
[19] Yan YL, Bhattacharya P, He XJ, Ponugoti B, Marquardt B, Layman J, Grunloh M, Postlethwait JH, Rubin DA. Duplicated zebrafish co-orthologs of parathyroid hormone-related peptide (PTHrP, Pthlh) play different roles in craniofacial skeletogenesis. J Endocrinol, 2012, 214(3): 421-435.
[20] Suda N, Shibata S, Yamazaki K, Kuroda T, Senior PV, Beck F, Hammond VE. Parathyroid hormone-related protein regulates proliferation of condylar hypertrophic chondrocytes. J Bone Miner Res, 1999, 14(11): 1838-1847.
[21] Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev, 1994, 8(3): 277-289.
[22] Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA, 1996, 93(19): 10240-10245.
[23] Aya K, Tanaka H, Ichinose Y, Kobayashi M, Seino Y. Expression of parathyroid hormone-related peptide messenger ribonucleic acid in developing kidney. Kidney Int, 1999, 55(5): 1696-1703.
[24] Musso MJ, Plante M, Judes C, Barthelmebs C, Helwiq JJ. Renal vasodilatation and microvessel adenylate cyclasestimulation by synthetic parathyroid hormone-like protein fragments. Eur J Pharmacol, 1989, 174(2-3): 139-151.
[25] Simeoni U, Massfelder T, Saussine C, Judes C, Geisert J, Helwig JJ. Involvement of nitric oxide in the vasodilatory response to parathyroid hormone-related peptide in the isolated rabbit kidney. Clin Sci, 1994, 86(3): 245-249.
[26] Massfelder T, Dann P, Wu TL, Vasavada R, Helwiq JJ, Stewart AF. Opposing mitogenic and anti-mitogenic actions of parathyroid hormone-related protein in vascular smooth muscle cells: A critical role for nuclear targeting. Proc Natl Acad Sci USA, 1997, 94(25): 13630-13635.
[27] Saussine C, Massfelder T, Paruin F, Judes C, Simeoni U, Helwiq JJ. Renin stimulating properties of parathyroid hormone-related peptide in the isolated perfused rat kidney. Kidney Int, 1993, 44(4): 764-73.
[28] Saussine C, Judes C, Massfelder T, Musso MJ, Simeoni U, Hannedouche T, Helwiq JJ. Stimulatory action of parathyroid hormone on renin secretion in vitro: A study using isolated rat kidney, isolated rabbit glomeruli and superfused dispersed ratjuxtaglomerular cells. Clin Sci, 1993, 84(1): 11-19.
[29] Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC. Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci USA, 1998, 95(20): 11846-11851.
[30] Wysolmerski JJ, Broadus AE, Zhou J, Fuchs E, Milstone LM, Philbrick WM. Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Natl Acad Sci USA, 1994, 91(3): 1133-1137.
[31] Rubin LP, Kovacs CS, De Paepe ME, Tsai SW, Torday JS, Kronenber HM. Arrested pulmonary alveolar cytodifferentiation and defective surfactant synthesis in mice missing the gene for parathyroid hormone-related protein. Dev Dyn, 2004, 230(2): 278-289.
[32] Speziale MV, Mannino FL, Hastings RH, Deftos LJ. Parathyroid hormone-related protein in tracheal aspirates of newborn infants. Pediatr Res, 1998, 43(5): 660-665.
[33] Cohen JC, Larson JE, Killeen E, Love D, Takemaru K. CFTR and Wnt/beta-catenin signaling in lung develop-ment. BMC Dev Biol, 2008, 8: 70.
[34] Vasavada RC, Cavaliere C, D’Ercole AJ, Dann P, Burtis WJ, Madlener AL, Zawalich K, Zawalich W, Philbrick W, Stewart AF. Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypoglycemia. J Biol Chem, 1996, 271(2): 1200-1208.
[35] Kata Boras-Granic, Pamela Dann, Joshua VanHouten, Andrew Karaplis, John Wysolmerski. Deletion of the nuclear localization sequences and C-terminus of PTHrP impairs embryonic mammary development but also inhibits PTHrP production. PLoS ONE, 2014, 9(5): e90418.
[36] Thiede MA, Daifotis AG, Weir EC, Brines ML, Burtis WJ, Ikeda BE, Garfield RE, Broadus AE. Intrauterine occupancy controls expression of the parathyroid hormonerelated peptide gene in preterm rat myometrium. Proc Natl Acad Sci USA, 1990, 87(18): 6969-6973.
[37] 金鎮(zhèn), 趙怡璇. 圍產(chǎn)期PTHrP的生理作用及意義. 國外醫(yī)學, 1999, 10(3): 97-99.
[38] Ferguson JE, Seaner R, Bruns DE, Redick JA, Mills SE, Jüppner H, Segre GV, Bruns ME. Expression of parathyroid hormone-related protein and its receptor in human umbilical cord: evidence for a paracrine system involving umbilical vessels. Am J Obstet Gynecol, 1994, 170(4): 1018-1024.
[39] Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA, 1996, 93(26): 15233-15238.
[40] El-Hashash AHK, Kimber SJ. PTHrP induces changes in cellcytoskeleton and E-cadherin and regulates Eph/ Ephrinkinases and RhoGTPases in murine secondary trophoblast cells. Dev Biol, 2006, 290(1): 13-31.
[41] van de Stolpe A, Karperien M, L?wik CW, Jüppner H, Segre GV, Abou-Samra AB, de Laat SW, Defize LH. Parathyroid hormone-related peptide as an endogenous inducer of parietal endoderm differentiation. J Cell Biol, 1993, 120(1): 235-243.
[42] Watson PH, Westhusin ME, Watson AJ. Expression of PTHrP and PTHR (PTH/PTHrP-r) mRNAs and polypeptides in bovine ovary and stimulation of bovine blastocyst development in vitro following PTHrP treatment during oocyte maturation. Anat Embryol (Berl), 2001, 203(3): 175-184.
[43] Nowak RA, Haimovici F, Biggers JD, Erbach GT. Transforming growth factor-βstimulates mouse blastocyst outgrowth through a mechanism involving parathyroid hormone-related protein. Biol Reprod, 1999, 60(1): 85-93.
[44] Guo L, Qi ST, Miao DQ, Liang XW, Li H, Ou XH, Huang X, Yang CR, Ouyang YC, HouY, Sun QY, Han ZM. The roles of parathyroid hormone-like hormone during mouse preimplantation embryonic development. PLoS ONE, 2012, 7(7): e40528.
[45] Erbach GT, Biggers JD, Manning PC, Nowak RA. Localization of parathyroid hormone-related protein in the preimplantation mouse embryo is associated with events of blastocyst hatching. J Assist Reprod Genet, 2013, 30(8): 1009-1015.
[46] Jüppner H, Abou-Samra AB, Uneno S, Gu WX, Potts JT Jr, Segre GV. The parathyroid hormone-like peptide associated with humoral hypercalcemia of malignancy and parathyroid hormone bind to the same receptor on the plasma membrane of ROS 17/2. 8 cells. J Biol Chem, 1988, 263(18): 8557-8560.
[47] Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts JT Jr. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA, 1992, 89(7): 2732-2736.
[48] Bhattacharya P, Yan YL, Postlethwait J, Rubin DA. Evolution of the vertebrate pth2 (tip39) gene family andthe regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol, 2011, 211(2): 187-200.
[49] Mahon MJ, Shimada M. Calmodulin interacts with the cytoplasmic tails of the parathyroid hormone 1 receptor and a sub-set of class b G-protein coupled receptors. FEBS Lett, 2005, 579(3): 803-807.
[50] Datta NS, Chen C, Berry JE, McCauley LK. PTHrP signaling targets cyclin D1 and induces osteoblastic cell growth arrest. J Bone Miner Res, 2005, 20(6): 1051-1064.
[51] Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK. Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res, 2007, 22(7): 951-964.
[52] Stork PJS, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling of cell proliferation. Trends Cell Biol, 2002, 12(6): 258-266.
[53] Reyland ME. Protein kinase C isoforms: multi-functional regulators of cell life and death. Front Biosci, 2009, 14: 2386-2399.
[54] Kozhemyakina E, Cohen T, Yao TP, Lassar AB. Parathyroid hormone-related peptide represses chondrocyte hyper-trophy through a protein phosphatase 2A/histone deacetylase4/MEF2 pathway. Mol Cell Biol, 2009, 29(21): 5751- 5762.
[55] Hiremath M, Dann P, Fischer J, Butterworth D, Boras-Granic K, Hens J, Van Houten J, Shi W, Wysolmerski J. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development, 2012, 139(22): 4239-4249.
[56] Torday JS, Rehan VK. Up-regulation of fetal rat lung parathyroid hormone-related protein gene regulatory network down-regulates the Sonic Hedgehog/Wnt/betacatenin gene regulatory network. Pediatr Res, 2006, 60(4): 328-388.
[57] Chuykin I, Schulz H, Guan K, Bader M. Activation of the PTHRP/adenylatecyclase pathway promotes differentiation of rat XEN cells into parietal endoderm, whereas Wnt/β-catenin signaling promotes differentiation into visceral endoderm. J Cell Sci, 2013, 126(1): 128-138.
(責任編委: 陳 雁)
Role of parathyroid hormone-like hormone during embryonic development
Yuanyuan Li1,2, Lei Guo2, Shengsheng Lu1, Zhiming Han2
1. College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
2. State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Parathyroid hormone-like hormone (PTHLH), also known as parathyroid hormone-related protein (PTHrP), was first identified as a parathyroid hormone (PTH)-like factor responsible for humoral hypercalcaemia in malignancies. Subsequent studies demonstrated that PTHLH has multiple physiological functions in many fetal and adult tissues, including the regulation of morphogenesis, cell proliferation and differentiation, and transplacental calcium transport. This review focuses on the biological characteristics of PTHLH and its function during embryonic development. The signaling pathway and potential mechanism involved are further discussed.
parathyroid hormone-like hormone; embryonic development; signaling pathway
2014-04-29;
2014-08-12
國家自然科學基金項目(編號:31372144)資助
李園園,碩士研究生,專業(yè)方向:發(fā)育生物學。E-mail: liyuanyuan16@sina.cn
韓之明,博士,副研究員,專業(yè)方向:發(fā)育生物學。E-mail: hanzm@ioz.ac.cn
盧晟盛,博士,研究員,專業(yè)方向:發(fā)育生物學。E-mail: sslu@gxu.edu.cn
10.3724/SP.J.1005.2014.0871
時間: 2014-8-12 14:20:20
URL: http://www.cnki.net/kcms/detail/11.1913.R.20140812.1420.004.html