張彥清+++侯偉+++李玲+++辛化梅
摘 要:為了得到更好的凝膠圖像分割效果,文章提出了一種基于馬爾科夫隨機場(MRF)模型分割算法的改進算法,首先用非局部均值(NL-means)對圖像進行濾波,然后通過模糊c均值算法(FCM)實現(xiàn)了圖像的初始聚類分割,進一步通過二階邏輯模型(MLL)模糊聚類作為先驗知識獲取其先驗概率并因此得到后驗概率,在此過程中引入了灰度點密度權(quán)值來實現(xiàn)聚類和均值方差的更新,最終實現(xiàn)凝膠圖像的最優(yōu)化分割。
關(guān)鍵詞:馬爾科夫隨機場;分割;灰度點密度;凝膠圖像
引言
圖像分割就是把一幅圖像分成若干個特定的區(qū)域并提出感興趣目標(biāo)的技術(shù)和過程,也是從圖像處理進入圖像分析的關(guān)鍵步驟,屬于基本計算機視覺技術(shù)范疇。只有在圖像分割成功的基礎(chǔ)上才有可能實現(xiàn)對目標(biāo)特征的提取和參數(shù)的測量,才能使更高層圖像的分析和圖像理解成為可能。
20世紀(jì)70年代中期,二維凝膠電泳這個概念由O'Farrell與Klose等人建立[1],但那時并未有蛋白質(zhì)組學(xué)這個概念,隨著二維凝膠技術(shù)的逐漸成熟發(fā)展,蛋白質(zhì)組學(xué)的發(fā)展也突飛猛進,直至今天的輝煌成就。
二維凝膠圖像[2]可以被看作是一幅數(shù)字圖像,在這幅圖像上,蛋白質(zhì)點被掃描成不同形狀、不同大小和不同灰度的點,分割是其分析的關(guān)鍵步驟之一,它的目的是有效的將目標(biāo)蛋白質(zhì)點從凝膠圖像中分割出來?;隈R爾可夫隨機場的分割方法是一種利用圖像中像素間的空間相關(guān)性進行分割的方法,能夠準(zhǔn)確地描述每個像素所屬類別與周圍像素類別之間的重要依賴關(guān)系。國內(nèi)外的研究者們已對MRF的圖像分割方法進行了深入了研究,其最早是由S. German和D. German[3]提到的有關(guān)隨機場概念的問題開始的,而后在1994年,Bouman等再次[4]提出了具有因果特性的馬爾科夫先驗?zāi)P?,文獻[5]利用馬爾科夫隨機場的MLL模型來描敘像素標(biāo)號場的先驗概率,文獻[6]提出的HMRF-FCM圖像分割算法實現(xiàn)了用均值場來逼近馬爾科夫隨機場,但是他的算法復(fù)雜度較高,計算效率較低。
本文在綜合分析已有文獻算法的基礎(chǔ)上,結(jié)合凝膠圖像的特點,提出了一種改進的MRF凝膠圖像分割方法。改進算法首先利用非局部均值算法對圖像進行預(yù)處理,根據(jù)像素點之間的相似度進行去噪,使其在結(jié)構(gòu)和細(xì)節(jié)保護上具有一定優(yōu)勢,同時對各類灰度均值點密度聚類采用歸一化加權(quán)方式引入權(quán)重ω,使其后驗概率的確定更加準(zhǔn)確從而實現(xiàn)凝膠圖像的分割。
1 算法介紹
1.1 馬爾可夫隨機場
馬爾可夫隨機場方法[7]是建立在MRF模型與貝葉斯(Bayes)理論的基礎(chǔ)上,提供了先驗知識與不確定性描述聯(lián)系的紐帶,并根據(jù)觀測圖像的特點,利用估計理論和統(tǒng)計決策中某些最優(yōu)準(zhǔn)則確定分割問題的目標(biāo)函數(shù),以此來求解滿足這些條件的最大可能分布,從而將分割問題轉(zhuǎn)化為最優(yōu)化問題?;贛RF 的分割方法是一種利用圖像像素的空間相關(guān)性進行分割的方法,它先將圖像的灰度信息進行分類,并且能夠準(zhǔn)確的描述每個像素所屬分類與周圍像素類別之間的相互依賴關(guān)系。
1.2 基于改進MRF的凝膠圖像分割問題實現(xiàn)
在馬爾科夫隨機場中,常用兩個隨機場來描述帶分割的圖像,假設(shè)X和Y是二維平面上的隨機場,則令X是像素的標(biāo)號場,一般用先驗分布描述標(biāo)號場的局部相關(guān)性;令Y為觀測圖像場,常以標(biāo)號場為條件用分布函數(shù)來描述觀測數(shù)據(jù)的分布。然后根據(jù)貝葉斯定理[8~12]實現(xiàn)圖像的分割,但是若依據(jù)傳統(tǒng)公式進行計算,計算量很大,很難得到理想效果,所以我們假設(shè)觀測場Y=y每一個成分是相對獨立于給定標(biāo)記場X=x的,并且標(biāo)記場中共有C個標(biāo)記,這樣的話,凝膠圖像的分割問題可表示為:
(1)
其中P(X=x|Y=y)是標(biāo)記場X=x在已知觀測數(shù)據(jù)Y=y條件下的后驗概率,P(yc|X=x)指的是在X=x的條件下觀測場成分yc的概率分布,P(Y=y)則是已知觀測數(shù)據(jù)Y=y的概率,在這里由于觀測場Y=y指的是觀測圖像,是作為一個已知量存在的,因此在分析圖像分割的最大后驗概率過程可以忽略,P(Y=y)的影響。P(X=x)是X=x的先驗概率,本文通過基于MRF分割模型MLL來獲取標(biāo)記場的先驗概率,這里僅考慮二階MLL模型,定義其能量函數(shù)如下:
(2)
其中V(xi,xj)是勢函數(shù),當(dāng)xi=xj,V(xi,xj)=-1;當(dāng)xi≠xj,V(xi,xj)=1;Ni是第i個位置的領(lǐng)域;?茁指的是空間位置函數(shù)[8],它的取值與隸屬度函數(shù)有關(guān),定義為?茁=1-0.5?滋i(xi),所以當(dāng)隸屬度?滋i(xi)值越小,說明其屬于類c的程度越小,反之越大,也就是說在這里該點的分類很大程度上取決于它的領(lǐng)域狀況。這樣就得到了其先驗概率:
(3)
通過前面的推導(dǎo),僅有P(yc|X=x)作為未知量存在,由于一個類的特征數(shù)據(jù)通常被認(rèn)為是正態(tài)分布的,在此我們將做進一步假設(shè),令圖像中屬于同一類的像素服從高斯分布,那么在計算高斯分布的時候引入一個灰度密度的加權(quán)系數(shù)來實現(xiàn)高斯分布灰度均值與方差的獲取與更新,其公式如下:
(4)
Dij指的是像素之間的歐式距離,兩像素值越接近?籽i值將會越大。之后再進行一個歸一化處理得到其加權(quán)系數(shù),用于表示像素 對于分類的影響程度:
(5)
將加權(quán)系數(shù)帶入廣義模糊集的質(zhì)心公式,用質(zhì)心來替代類的均值,即:
(6)
?滋ij是初始分割模糊聚類算法中的隸屬度。
(7)
由公式(6)和(7)便得到了均值與方差,那么其高斯分布函數(shù)就表示了像素的觀測場同一類型區(qū)域的分布,即:
(8)
則凝膠圖像分割問題可以表示為:
(9)
這里,P(Xm=c|X■)表示標(biāo)記場的局部概率,Nm是位置m的鄰域位置集合。
2分割算法實現(xiàn)步驟與實驗仿真分析
2.1 分割算法實現(xiàn)步驟
(1)凝膠圖像的預(yù)分割:利用非局部均值算法(NL-means)對圖像進行濾波并且結(jié)合模糊C均值算法實現(xiàn)圖像的初始分割,將圖像分為3類;
(2)利用公式(3)獲取圖像的先驗概率;
(3)依據(jù)已獲得的先驗知識的先驗概率利用公式(9)得到圖像的后驗概率;
(4)利用權(quán)重值來更新類的均值與方差;
(5)判斷收斂與否,若不收斂,重復(fù)步驟(2)~(5),反之算法結(jié)束。
2.2實驗仿真分析
2.2.1 實驗仿真
本文采用凝膠模擬圖像和凝膠真實圖像進行實驗測試,且選取的圖像大小均為256 256。模擬圖像的分割結(jié)果如圖1所示:圖(a)為凝膠模擬圖像,圖(b)為加入均值為零,方差為0.02的高斯噪聲模擬圖像,圖(c)為原始方法對于模擬圖像的分割結(jié)果,圖(d)為改進算法的分割結(jié)果。真實圖像的分割結(jié)果如圖2所示:圖(a)為真實凝膠圖像的原始圖像,圖(b)為原始圖像預(yù)處理結(jié)果,圖(c)為原始算法對于真實圖像的分割結(jié)果,圖(d)為改進算法對真實圖像的分割結(jié)果。
2.2.2 算法的性能描述
首先從人的主觀觀察上可以發(fā)現(xiàn),原算法與改進算法無論對模擬圖像還是真實圖像均能在一定程度上實現(xiàn)有效分割,但是本文所提出的改進算法相對原始算法來說,明顯提高了對噪聲的魯棒性,并且對微弱蛋白點的分割有一定的保障作用,增強了分割效果。
表1是對原始算法和改進算法分割結(jié)果的客觀分析,這里通過對總體分割精度(錯分率)、kappa系數(shù)[11]以及算法效率進行對比研究。從表1中我們可以看到,本文采用的改進算法不僅提高了凝膠圖像的分割精度,而且還減少了計算量,提高了計算效率,除此之外,kappa系數(shù)的值越大,說明其分割效果越好。
3 結(jié)束語
本文在綜合分析已有文獻算法的基礎(chǔ)上,結(jié)合凝膠圖像的特點,提出了一種改進的MRF凝膠圖像分割方法,首先用非局部均值對圖像進行濾波,為凝膠圖像的有效分割提供了一個良好的基礎(chǔ),而后通過模糊c均值算法實現(xiàn)了圖像的初始聚類分割,將圖像分為3類,再通過MLL模型模糊聚類作為先驗知識獲取其先驗概率并因此得到后驗概率,在此過程中引入了灰度點密度權(quán)值來實現(xiàn)聚類均值方差的更新,最終實現(xiàn)凝膠圖像的最優(yōu)化分割。仿真結(jié)果表明,本文提出的算法具有較高的分割精度和可行性,提高了對噪聲的消除能力和算法計算效率。
參考文獻
[1]宋革,姜勇.二維凝膠電泳的新技術(shù)及其應(yīng)用[J].中國微循環(huán),2005,9(1):62-65.
[2]Marc R.Wilkins, Christian Pasquali, et al. From proteins to proteomes large scale protein identification by two-dimensional electrophoresis and arnino acid analysis[J]. Bio/Technology, 1996, 14(1): 61-65.
[3] LEIT, SEWCHAND W. Statistical approach to X-ray CT imaging and its applications in image analysis-Part 2: A new stochastic model-based image segmentation technique for X-ray CT images [J]. IEEE Transactions on Medical Image, 1992, 11(1): 62-69.
[4] Charles. A Bouman, Michael Shapiro. A multiscal random field model for Bayesian image segmentation[J]. IEEE Transactions on image processing, 1994, 3(2): 162-177.
[5] Yanqiu Feng, Wufan Chen. Brain MR image segmentation using fuzzy clustering with spatial constraints based on markov random field theory[J]. Lecture Notes in Computer Science, 2004: 188-195.
[6] Sotirios P Chatzis, Theodora A Varigou. A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(5): 1351-1361.
[7] YANG Qinghai, LU Bo, YAN Ziye, et al. Touched string segmentation algorithm based on Markov random field[J]. Computer Engineering, 2013, 39(4): 258-262.
[8] Huawu Deng?, David A. Clausi. Unsupervised image segmentation using a simple MRF model with a new implementation scheme[J]. Pattern Recognition, 2004, 2(8): 691 - 694.
[9] Yan Gang, Chen Wufan, Feng Yanqiu. Generalized fuzzy gibbs random filed and research on algorithm for MR image segmentation[J].Journal of Image and Graphics, 2005, 10(9): 1082-1088.
[10]李旭超. 小波域馬爾可夫隨機場在圖像處理中的應(yīng)用[M]. 北京:電子工業(yè)出版社.
[11]C. S. Won, H. Derin. Unsupervised segmentation of noisy and textured images using Markov random ?elds[J], CVGIP: Graphical Models Image Process, 1992, 54 (4) : 308-328.
[12]劉國英. 基于Markov隨機場的小波域圖像建模與分割:Matlab環(huán)境[M]. 北京:北京出版社, 2008.
作者簡介:張彥清(1988)女,山東泰安人,碩士研究生。主要研究方向為智能信號與信息處理。
侯偉,女,山東濟南人,副研究員。主要研究方向為信號與信息處理。
李玲,女,山東濟南人,副教授。主要研究方向為信號與信息處理。
辛化梅,女,山東青島人,博士,副教授。主要研究方向為信號與信息處理。
2分割算法實現(xiàn)步驟與實驗仿真分析
2.1 分割算法實現(xiàn)步驟
(1)凝膠圖像的預(yù)分割:利用非局部均值算法(NL-means)對圖像進行濾波并且結(jié)合模糊C均值算法實現(xiàn)圖像的初始分割,將圖像分為3類;
(2)利用公式(3)獲取圖像的先驗概率;
(3)依據(jù)已獲得的先驗知識的先驗概率利用公式(9)得到圖像的后驗概率;
(4)利用權(quán)重值來更新類的均值與方差;
(5)判斷收斂與否,若不收斂,重復(fù)步驟(2)~(5),反之算法結(jié)束。
2.2實驗仿真分析
2.2.1 實驗仿真
本文采用凝膠模擬圖像和凝膠真實圖像進行實驗測試,且選取的圖像大小均為256 256。模擬圖像的分割結(jié)果如圖1所示:圖(a)為凝膠模擬圖像,圖(b)為加入均值為零,方差為0.02的高斯噪聲模擬圖像,圖(c)為原始方法對于模擬圖像的分割結(jié)果,圖(d)為改進算法的分割結(jié)果。真實圖像的分割結(jié)果如圖2所示:圖(a)為真實凝膠圖像的原始圖像,圖(b)為原始圖像預(yù)處理結(jié)果,圖(c)為原始算法對于真實圖像的分割結(jié)果,圖(d)為改進算法對真實圖像的分割結(jié)果。
2.2.2 算法的性能描述
首先從人的主觀觀察上可以發(fā)現(xiàn),原算法與改進算法無論對模擬圖像還是真實圖像均能在一定程度上實現(xiàn)有效分割,但是本文所提出的改進算法相對原始算法來說,明顯提高了對噪聲的魯棒性,并且對微弱蛋白點的分割有一定的保障作用,增強了分割效果。
表1是對原始算法和改進算法分割結(jié)果的客觀分析,這里通過對總體分割精度(錯分率)、kappa系數(shù)[11]以及算法效率進行對比研究。從表1中我們可以看到,本文采用的改進算法不僅提高了凝膠圖像的分割精度,而且還減少了計算量,提高了計算效率,除此之外,kappa系數(shù)的值越大,說明其分割效果越好。
3 結(jié)束語
本文在綜合分析已有文獻算法的基礎(chǔ)上,結(jié)合凝膠圖像的特點,提出了一種改進的MRF凝膠圖像分割方法,首先用非局部均值對圖像進行濾波,為凝膠圖像的有效分割提供了一個良好的基礎(chǔ),而后通過模糊c均值算法實現(xiàn)了圖像的初始聚類分割,將圖像分為3類,再通過MLL模型模糊聚類作為先驗知識獲取其先驗概率并因此得到后驗概率,在此過程中引入了灰度點密度權(quán)值來實現(xiàn)聚類均值方差的更新,最終實現(xiàn)凝膠圖像的最優(yōu)化分割。仿真結(jié)果表明,本文提出的算法具有較高的分割精度和可行性,提高了對噪聲的消除能力和算法計算效率。
參考文獻
[1]宋革,姜勇.二維凝膠電泳的新技術(shù)及其應(yīng)用[J].中國微循環(huán),2005,9(1):62-65.
[2]Marc R.Wilkins, Christian Pasquali, et al. From proteins to proteomes large scale protein identification by two-dimensional electrophoresis and arnino acid analysis[J]. Bio/Technology, 1996, 14(1): 61-65.
[3] LEIT, SEWCHAND W. Statistical approach to X-ray CT imaging and its applications in image analysis-Part 2: A new stochastic model-based image segmentation technique for X-ray CT images [J]. IEEE Transactions on Medical Image, 1992, 11(1): 62-69.
[4] Charles. A Bouman, Michael Shapiro. A multiscal random field model for Bayesian image segmentation[J]. IEEE Transactions on image processing, 1994, 3(2): 162-177.
[5] Yanqiu Feng, Wufan Chen. Brain MR image segmentation using fuzzy clustering with spatial constraints based on markov random field theory[J]. Lecture Notes in Computer Science, 2004: 188-195.
[6] Sotirios P Chatzis, Theodora A Varigou. A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(5): 1351-1361.
[7] YANG Qinghai, LU Bo, YAN Ziye, et al. Touched string segmentation algorithm based on Markov random field[J]. Computer Engineering, 2013, 39(4): 258-262.
[8] Huawu Deng?, David A. Clausi. Unsupervised image segmentation using a simple MRF model with a new implementation scheme[J]. Pattern Recognition, 2004, 2(8): 691 - 694.
[9] Yan Gang, Chen Wufan, Feng Yanqiu. Generalized fuzzy gibbs random filed and research on algorithm for MR image segmentation[J].Journal of Image and Graphics, 2005, 10(9): 1082-1088.
[10]李旭超. 小波域馬爾可夫隨機場在圖像處理中的應(yīng)用[M]. 北京:電子工業(yè)出版社.
[11]C. S. Won, H. Derin. Unsupervised segmentation of noisy and textured images using Markov random ?elds[J], CVGIP: Graphical Models Image Process, 1992, 54 (4) : 308-328.
[12]劉國英. 基于Markov隨機場的小波域圖像建模與分割:Matlab環(huán)境[M]. 北京:北京出版社, 2008.
作者簡介:張彥清(1988)女,山東泰安人,碩士研究生。主要研究方向為智能信號與信息處理。
侯偉,女,山東濟南人,副研究員。主要研究方向為信號與信息處理。
李玲,女,山東濟南人,副教授。主要研究方向為信號與信息處理。
辛化梅,女,山東青島人,博士,副教授。主要研究方向為信號與信息處理。
2分割算法實現(xiàn)步驟與實驗仿真分析
2.1 分割算法實現(xiàn)步驟
(1)凝膠圖像的預(yù)分割:利用非局部均值算法(NL-means)對圖像進行濾波并且結(jié)合模糊C均值算法實現(xiàn)圖像的初始分割,將圖像分為3類;
(2)利用公式(3)獲取圖像的先驗概率;
(3)依據(jù)已獲得的先驗知識的先驗概率利用公式(9)得到圖像的后驗概率;
(4)利用權(quán)重值來更新類的均值與方差;
(5)判斷收斂與否,若不收斂,重復(fù)步驟(2)~(5),反之算法結(jié)束。
2.2實驗仿真分析
2.2.1 實驗仿真
本文采用凝膠模擬圖像和凝膠真實圖像進行實驗測試,且選取的圖像大小均為256 256。模擬圖像的分割結(jié)果如圖1所示:圖(a)為凝膠模擬圖像,圖(b)為加入均值為零,方差為0.02的高斯噪聲模擬圖像,圖(c)為原始方法對于模擬圖像的分割結(jié)果,圖(d)為改進算法的分割結(jié)果。真實圖像的分割結(jié)果如圖2所示:圖(a)為真實凝膠圖像的原始圖像,圖(b)為原始圖像預(yù)處理結(jié)果,圖(c)為原始算法對于真實圖像的分割結(jié)果,圖(d)為改進算法對真實圖像的分割結(jié)果。
2.2.2 算法的性能描述
首先從人的主觀觀察上可以發(fā)現(xiàn),原算法與改進算法無論對模擬圖像還是真實圖像均能在一定程度上實現(xiàn)有效分割,但是本文所提出的改進算法相對原始算法來說,明顯提高了對噪聲的魯棒性,并且對微弱蛋白點的分割有一定的保障作用,增強了分割效果。
表1是對原始算法和改進算法分割結(jié)果的客觀分析,這里通過對總體分割精度(錯分率)、kappa系數(shù)[11]以及算法效率進行對比研究。從表1中我們可以看到,本文采用的改進算法不僅提高了凝膠圖像的分割精度,而且還減少了計算量,提高了計算效率,除此之外,kappa系數(shù)的值越大,說明其分割效果越好。
3 結(jié)束語
本文在綜合分析已有文獻算法的基礎(chǔ)上,結(jié)合凝膠圖像的特點,提出了一種改進的MRF凝膠圖像分割方法,首先用非局部均值對圖像進行濾波,為凝膠圖像的有效分割提供了一個良好的基礎(chǔ),而后通過模糊c均值算法實現(xiàn)了圖像的初始聚類分割,將圖像分為3類,再通過MLL模型模糊聚類作為先驗知識獲取其先驗概率并因此得到后驗概率,在此過程中引入了灰度點密度權(quán)值來實現(xiàn)聚類均值方差的更新,最終實現(xiàn)凝膠圖像的最優(yōu)化分割。仿真結(jié)果表明,本文提出的算法具有較高的分割精度和可行性,提高了對噪聲的消除能力和算法計算效率。
參考文獻
[1]宋革,姜勇.二維凝膠電泳的新技術(shù)及其應(yīng)用[J].中國微循環(huán),2005,9(1):62-65.
[2]Marc R.Wilkins, Christian Pasquali, et al. From proteins to proteomes large scale protein identification by two-dimensional electrophoresis and arnino acid analysis[J]. Bio/Technology, 1996, 14(1): 61-65.
[3] LEIT, SEWCHAND W. Statistical approach to X-ray CT imaging and its applications in image analysis-Part 2: A new stochastic model-based image segmentation technique for X-ray CT images [J]. IEEE Transactions on Medical Image, 1992, 11(1): 62-69.
[4] Charles. A Bouman, Michael Shapiro. A multiscal random field model for Bayesian image segmentation[J]. IEEE Transactions on image processing, 1994, 3(2): 162-177.
[5] Yanqiu Feng, Wufan Chen. Brain MR image segmentation using fuzzy clustering with spatial constraints based on markov random field theory[J]. Lecture Notes in Computer Science, 2004: 188-195.
[6] Sotirios P Chatzis, Theodora A Varigou. A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(5): 1351-1361.
[7] YANG Qinghai, LU Bo, YAN Ziye, et al. Touched string segmentation algorithm based on Markov random field[J]. Computer Engineering, 2013, 39(4): 258-262.
[8] Huawu Deng?, David A. Clausi. Unsupervised image segmentation using a simple MRF model with a new implementation scheme[J]. Pattern Recognition, 2004, 2(8): 691 - 694.
[9] Yan Gang, Chen Wufan, Feng Yanqiu. Generalized fuzzy gibbs random filed and research on algorithm for MR image segmentation[J].Journal of Image and Graphics, 2005, 10(9): 1082-1088.
[10]李旭超. 小波域馬爾可夫隨機場在圖像處理中的應(yīng)用[M]. 北京:電子工業(yè)出版社.
[11]C. S. Won, H. Derin. Unsupervised segmentation of noisy and textured images using Markov random ?elds[J], CVGIP: Graphical Models Image Process, 1992, 54 (4) : 308-328.
[12]劉國英. 基于Markov隨機場的小波域圖像建模與分割:Matlab環(huán)境[M]. 北京:北京出版社, 2008.
作者簡介:張彥清(1988)女,山東泰安人,碩士研究生。主要研究方向為智能信號與信息處理。
侯偉,女,山東濟南人,副研究員。主要研究方向為信號與信息處理。
李玲,女,山東濟南人,副教授。主要研究方向為信號與信息處理。
辛化梅,女,山東青島人,博士,副教授。主要研究方向為信號與信息處理。