国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

調(diào)控骨骼肌肌纖維類型轉(zhuǎn)化的因素及機(jī)制

2014-03-23 19:59賈安峰馮京海張敏紅
動物營養(yǎng)學(xué)報(bào) 2014年5期
關(guān)鍵詞:肌纖維骨骼肌比例

賈安峰 馮京海 張敏紅

隨著畜禽養(yǎng)殖業(yè)的快速發(fā)展,人們在追求畜產(chǎn)品數(shù)量的同時(shí),也越來越關(guān)注畜產(chǎn)品品質(zhì)。動物骨骼肌由不同類型的肌纖維構(gòu)成,肌纖維的類型直接影響肌內(nèi)脂肪含量、嫩度以及肉色等肉品質(zhì)特性[1]。動物出生后骨骼肌肌纖維類型持續(xù)轉(zhuǎn)化[2]。近年來,圍繞骨骼肌肌纖維的分類、骨骼肌肌纖維與肉品質(zhì)的關(guān)系以及影響骨骼肌肌纖維類型轉(zhuǎn)化的因素及其機(jī)制,國內(nèi)外開展了大量研究工作。

1 骨骼肌肌纖維的類型及其與肉品質(zhì)的關(guān)系

1.1 骨骼肌肌纖維的分類

骨骼肌由不同類型的肌纖維構(gòu)成。根據(jù)肌纖維的形態(tài)、代謝和收縮特點(diǎn),大致可分為Ⅰ型肌纖維(紅肌纖維或氧化型肌纖維)和Ⅱ型肌纖維(白肌纖維或酵解型肌纖維)2大類。根據(jù)肌動蛋白重鏈上三磷酸腺苷(ATP)酶活性的強(qiáng)弱可以將肌纖維分成慢速氧化型(slow-twitch and oxidative,SO)、快速氧化酵解型(fast-twitch and oxidativeglycolytic,F(xiàn)OG)、快速酵解型(fast-twitch and glycolytic,F(xiàn)G)3 種類型[3]。根據(jù)琥珀酸脫氫酶(succinodehydrogenase,SDH)的染色結(jié)果可以把肌纖維分為 βR、αR、αW(β:慢速;α:快速;R:紅;W:白)3種類型[4];根據(jù)肌動蛋白重鏈上ATP酶對酸堿的穩(wěn)定性可以將肌纖維分成Ⅰ、Ⅱa、Ⅱb 3種類型[5]。上述分類方法一般采用組織化學(xué)染色的方法,不需要專用抗體,成本低,而且肌纖維染色結(jié)果直觀清晰,但缺點(diǎn)是結(jié)果不夠精確,重復(fù)性差,且費(fèi)時(shí)費(fèi)力,還必須采用大塊的肌肉組織。目前在成年哺乳動物骨骼肌中共發(fā)現(xiàn)4種肌球蛋白重鏈(MyHC)亞型,分別為Ⅰ、2a、2b和 2x。Chang等[6-7]證實(shí)這4種亞型均在豬骨骼肌中表達(dá),并根據(jù)這4種亞型所表達(dá)的比例,將豬骨骼肌肌纖維分為Ⅰ、Ⅱa、Ⅱb和Ⅱx 4種類型,這種方法準(zhǔn)確、快速,是目前最為常用的骨骼肌肌纖維分類方法。

1.2 肌纖維類型與肉品質(zhì)的關(guān)系

骨骼肌肌纖維類型的組成直接影響肌肉品質(zhì)。Ⅰ型肌纖維直徑較細(xì),單位面積中肌纖維的數(shù)量多,故肌內(nèi)脂肪含量高,而肌內(nèi)脂肪含量影響肌肉的嫩度和風(fēng)味;Serra等[8]發(fā)現(xiàn)肌內(nèi)脂肪含量與Ⅰ型肌纖維含量成正相關(guān)。因此骨骼肌中Ⅰ型肌纖維的比例越高,肌肉剪切力越小,嫩度越高。約克夏豬肌肉中Ⅰ型肌纖維所占比例高于漢普夏豬,所以相比之下,約克夏豬肉質(zhì)更嫩[9]。中國的地方品種如金華豬、北京黑豬骨骼肌中Ⅰ型肌纖維的比例高于“杜×長×大”等引進(jìn)品種,這些地方品種的豬肉嫩度也優(yōu)于引進(jìn)品種[10]。骨骼肌肌纖維類型也會影響到肌肉的色澤。Ⅰ型肌纖維中肌紅蛋白和血紅蛋白的含量高,因此Ⅰ型肌纖維比例高的肌肉肉色鮮紅;另外,Ⅱ型肌纖維糖原酵解能力強(qiáng),在屠宰過程中易產(chǎn)生大量乳酸,導(dǎo)致肌肉pH迅速降低,因此Ⅱ型肌纖維為主的肌肉易出現(xiàn)PSE 肉[11]。

2 影響肌纖維類型轉(zhuǎn)化的因素

2.1 運(yùn)動

耐力訓(xùn)練可以誘導(dǎo)Ⅱ型肌纖維向Ⅰ型肌纖維轉(zhuǎn)化。研究發(fā)現(xiàn),耐力訓(xùn)練使人骨骼肌中Ⅱb型肌纖維比例降低,而Ⅱa型肌纖維比例升高[12],在小鼠中也發(fā)現(xiàn)同樣的結(jié)果[13]。還有些研究發(fā)現(xiàn),耐力訓(xùn)練導(dǎo)致人和小鼠比目魚肌中Ⅰ型肌纖維比例增加[14]。上述研究表明,耐力訓(xùn)練使Ⅱ型肌纖維向Ⅰ型肌纖維方向轉(zhuǎn)化,并按Ⅱb→Ⅱx→Ⅱa→Ⅰ的順序依次轉(zhuǎn)化,而且不同肌肉組織、不同運(yùn)動時(shí)間,轉(zhuǎn)化起點(diǎn)和終點(diǎn)不同,但是轉(zhuǎn)化的方向和趨勢一致。

力量訓(xùn)練可以誘導(dǎo)Ⅰ型肌纖維向Ⅱ型肌纖維轉(zhuǎn)化。Jansson等[15]對運(yùn)動員進(jìn)行高強(qiáng)度腳踏車訓(xùn)練5周,發(fā)現(xiàn)腿肌中Ⅰ型肌纖維比例從57%下降到48%,Ⅱ型肌纖維比例從32%上升到38%;并且Yarasheski等[16]在大鼠高強(qiáng)度抵抗訓(xùn)練中發(fā)現(xiàn),股直肌中Ⅰ型肌纖維比例顯著降低,Ⅱ型肌纖維比例顯著升高。在賽馬中也發(fā)現(xiàn)高強(qiáng)度的運(yùn)動可以使Ⅱx、Ⅱb型肌纖維比例升高,Ⅰ型肌纖維比例降低[17]。力量訓(xùn)練誘導(dǎo)肌纖維類型轉(zhuǎn)化與運(yùn)動強(qiáng)度也有關(guān)系,小強(qiáng)度可使Ⅰ型肌纖維增加,Ⅱb型肌纖維減少;中等強(qiáng)度可使Ⅰ、Ⅱb型肌纖維減少,Ⅱa型肌纖維增多;高強(qiáng)度可使Ⅱx型肌纖維增加[18]??梢?,力量訓(xùn)練使Ⅰ型肌纖維向Ⅱ型肌纖維方向轉(zhuǎn)化,且轉(zhuǎn)化的結(jié)果與力量訓(xùn)練的強(qiáng)度有關(guān),強(qiáng)度越大,從Ⅰ型肌纖維向Ⅱb型肌纖維轉(zhuǎn)化的趨勢越大。

2.2 衰老

衰老導(dǎo)致肌肉萎縮,還可以造成肌纖維類型從Ⅱ型肌纖維向Ⅰ型肌纖維的轉(zhuǎn)化。在大鼠的肌肉中,隨著年齡的增加,Ⅱb型肌纖維比例降低,Ⅱx、Ⅱa、Ⅰ型肌纖維比例增加[19];在衰老大鼠的比目魚肌中,Ⅱa型肌纖維比例降低,Ⅰ型肌纖維比例增加[19-20]。Larsson 等[21]認(rèn)為衰老造成肌肉萎縮和肌纖維類型的轉(zhuǎn)化與神經(jīng)系統(tǒng)的變化有關(guān)。肌肉萎縮衰老之后,神經(jīng)沖動的頻率降低,又由于Ⅰ型是慢速型肌纖維,從肌肉的適應(yīng)性來說,肌肉衰老也會造成Ⅰ型肌纖維比例增加。

2.3 溫度

持續(xù)高溫(33℃)應(yīng)激可以使生長豬Ⅱ型肌纖維比例增多,Ⅰ型肌纖維比例降低,并能夠引起肌肉的酵解潛能增加[22]。41℃高溫應(yīng)激可以增強(qiáng)人抗阻訓(xùn)練后的哺乳動物雷帕霉素靶蛋白(mTOR)信號,這間接表明高溫應(yīng)激誘導(dǎo)Ⅰ型肌纖維向Ⅱ型肌纖維的轉(zhuǎn)化[23];31℃高溫應(yīng)激促進(jìn)金魚的厭氧代謝途徑,抑制琥珀酸脫氫酶的活性,ATP酶活性增強(qiáng),這也間接表明高溫應(yīng)激誘導(dǎo)Ⅰ型肌纖維向Ⅱ型肌纖維的轉(zhuǎn)化[24];但 Yoshitaka等[25]發(fā)現(xiàn)在41℃高溫應(yīng)激條件下,小鼠的比目魚肌中Ⅰ型肌纖維和Ⅱ型肌纖維的比例未發(fā)生明顯變化;Yamaguchi等[26]體外試驗(yàn)發(fā)現(xiàn),提高培養(yǎng)溫度導(dǎo)致小鼠成肌細(xì)胞MyHCⅠ的蛋白和mRNA表達(dá)量升高,小鼠成肌細(xì)胞中MyHC2x的mRNA表達(dá)量降低。這表明體溫升高可以促進(jìn)Ⅱ型肌纖維向Ⅰ型肌纖維的轉(zhuǎn)化,且這一作用可能與激活過氧化物酶體增殖物激活受體輔助活化因子(transcriptional peroxisome proliferator-activated receptor α coactivator-1,PGC-1α)通道有關(guān)。高溫應(yīng)激如何影響肌纖維類型的轉(zhuǎn)化以及具體機(jī)制還需進(jìn)一步研究。低溫同樣影響肌纖維類型的轉(zhuǎn)化。Duchamp等[27]發(fā)現(xiàn)4℃低溫提高雛鴨骨骼?、裥图±w維的比例。Daichi等[28]也發(fā)現(xiàn)4℃低溫誘導(dǎo)雛雞骨骼?、裥图±w維的比例升高,同時(shí)PGC-1α mRNA表達(dá)量升高,表明冷應(yīng)激影響肌纖維類型轉(zhuǎn)化可能與PGC-1α有關(guān)。

2.4 營養(yǎng)

在母豬妊娠期和泌乳期進(jìn)行蛋白質(zhì)限飼,可導(dǎo)致仔豬Ⅰ型肌纖維比例顯著升高,Ⅱb型肌纖維比例顯著降低[29],對懷孕母豬進(jìn)行能量限飼也可導(dǎo)致同樣結(jié)果[30],另外在懷孕母羊上也有相似結(jié)果[31];給仔豬限飼,發(fā)現(xiàn)仔豬Ⅰ型肌纖維比例升高[32],在肉仔雞和犢牛上也有類似發(fā)現(xiàn)[33-34]。對生長豬進(jìn)行蛋白質(zhì)和能量限飼,發(fā)現(xiàn)Ⅱa型肌纖維比例升高,Ⅱb型肌纖維比例降低,同時(shí)肌脂蛋白表達(dá)量也升高。肌脂蛋白可抑制內(nèi)質(zhì)網(wǎng)從胞漿中攝入鈣離子(Ca2+),表明限飼誘導(dǎo)的肌纖維類型轉(zhuǎn)化與胞內(nèi)Ca2+信號有關(guān)[35]。而在飼料中添加共軛亞油酸,可以使生長豬背最長肌中MyHCⅠ、MyHC2a的mRNA表達(dá)量升高,MyHC2x的mRNA表達(dá)量降低[36]。

3 調(diào)控肌纖維類型轉(zhuǎn)化的胞內(nèi)信號途徑

外界因素如運(yùn)動、營養(yǎng)、環(huán)境高溫等因素可通過神經(jīng)內(nèi)分泌信號,作用于肌纖維細(xì)胞膜上的相關(guān)受體,調(diào)控細(xì)胞內(nèi)不同的信號調(diào)節(jié)通路,最終影響肌纖維類型的轉(zhuǎn)化。

3.1 鈣調(diào)神經(jīng)磷酸酶(calcinerin,CaN)信號通路

CaN信號通路是調(diào)控骨骼肌肌纖維類型轉(zhuǎn)化的重要途徑。肌纖維內(nèi)Ca2+持續(xù)低幅度升高可上調(diào)CaN蛋白和 mRNA的表達(dá)量[37],激活的 CaN可使胞質(zhì)中激活的T細(xì)胞核因子(nuclear factor of activated T cells,NFAT)去磷酸進(jìn)入胞核,調(diào)控肌纖維類型轉(zhuǎn)化相關(guān)靶基因的表達(dá)[38];CaN還可以通過肌細(xì)胞增強(qiáng)因子(myocyte enhancer factor 2a,MEF2)與 PGC-1α 啟動子上 MEF2-BS 位點(diǎn)結(jié)合后調(diào)節(jié)肌纖維類型的轉(zhuǎn)化[39]。過表達(dá)CaN小鼠的骨骼肌中Ⅰ、Ⅱa型肌纖維比例升高,而IIb型肌纖維比例降低[40];敲除CaN基因小鼠的骨骼肌中Ⅰ型肌纖維比例下降,Ⅱ型肌纖維比例升高[41];用CaN抑制劑環(huán)孢霉素A注射成年大鼠后,比目魚肌中的Ⅰ型肌纖維比例下降,Ⅱ型肌纖維比較升高[42];環(huán)孢霉素A還可以抑制低頻電刺激誘導(dǎo)的Ⅱ型肌纖維向Ⅰ型肌纖維的轉(zhuǎn)化[43]??梢?,上調(diào)CaN可誘導(dǎo)Ⅱ型肌纖維向Ⅰ型肌纖維的轉(zhuǎn)化。

運(yùn)動可通過調(diào)控胞內(nèi)Ca2+/CaN信號通路影響肌纖維類型的轉(zhuǎn)化。廖八根等[44]報(bào)道,CaN抑制劑環(huán)孢霉素A可抑制耐力運(yùn)動誘導(dǎo)肌纖維類型轉(zhuǎn)化;另有研究發(fā)現(xiàn),游泳或跑步訓(xùn)練中,CaN活性變化與肌纖維類型轉(zhuǎn)化在時(shí)間和空間分布上相一致[45],表明CaN信號通路參與Ⅱ型肌纖維向Ⅰ型肌纖維的轉(zhuǎn)化。

3.2 鈣/鈣調(diào)素依賴性蛋白激酶(alcium/calmodulin-dependent protein kinase,CaMK)信號通路

CaMK信號通路是調(diào)控骨骼肌肌纖維類型轉(zhuǎn)化的另一條重要途徑。CaMK可被肌纖維內(nèi)瞬時(shí)升高的Ca2+激活,而后在磷酸化組蛋白脫乙?;傅淖饔孟聫陌宿D(zhuǎn)移至胞漿,進(jìn)一步活化MEF2,參與Ⅰ型肌纖維基因轉(zhuǎn)錄的調(diào)控;激活的CaMK還可以通過腺苷-3',5'-環(huán)化一磷酸應(yīng)答元件結(jié)合蛋白(CREB)結(jié)合到PGC-1α啟動子上,進(jìn)而調(diào)節(jié)肌纖維類型的轉(zhuǎn)化[46-47]。

運(yùn)動可通過調(diào)控胞內(nèi)Ca2+/CaMK信號通路影響肌纖維類型的轉(zhuǎn)化。力量訓(xùn)練時(shí),體內(nèi)CaMKⅡ的活性增加,且運(yùn)動強(qiáng)度越大,CaMKⅡ活性越高[48],表明Ca2+/CaMK信號通路參與運(yùn)動肌纖維類型轉(zhuǎn)化的調(diào)控。

3.3 腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)信號通路

研究發(fā)現(xiàn),AMPK激活劑阿卡地新可誘導(dǎo)大鼠趾長伸肌Ⅱb型肌纖維向Ⅱx型肌纖維轉(zhuǎn)化[49]。而敲除AMPKa2基因的小鼠耐力訓(xùn)練時(shí)Ⅱb型肌纖維向Ⅱa、Ⅱx型肌纖維轉(zhuǎn)化顯著降低,表明AMPK信號通路參與Ⅱb型肌纖維向Ⅱa型肌纖維的轉(zhuǎn)化[50]。

3.4 過氧化物酶體增殖物激活受體(peroxisome proliferators-activated receptors,PPAR)信號通路

PPAR信號通路可能是調(diào)控骨骼肌肌纖維類型轉(zhuǎn)化的一條重要途徑。PPAR可通過其亞基與PGC-1α啟動子上過氧化物酶體增殖物反應(yīng)元件(PPRE)結(jié)合,進(jìn)而調(diào)節(jié) PGC-1ɑ的活性,通過PGC-1α調(diào)節(jié)肌纖維類型的轉(zhuǎn)化。研究發(fā)現(xiàn),超表達(dá)PPARγ基因小鼠骨骼肌中Ⅱ型肌纖維向Ⅰ型肌纖維轉(zhuǎn)化[51];敲除PPAR基因會導(dǎo)致小鼠骨骼肌中Ⅰ型肌纖維向Ⅱ型肌纖維轉(zhuǎn)化[52];且PPAR在Ⅰ型肌纖維中的表達(dá)量顯著高于Ⅱ型肌纖維[53]。表明PPAR可誘導(dǎo)Ⅱ型肌纖維向Ⅰ型肌纖維的轉(zhuǎn)化。耐力訓(xùn)練可以增加骨骼肌中PPAR的表達(dá)量,使線粒體內(nèi)脂肪酸氧化酶的含量及活性增加[54],表明PPAR信號通路可能參與了運(yùn)動對肌纖維類型轉(zhuǎn)化的調(diào)控。

4 小結(jié)

骨骼肌由不同類型的肌纖維構(gòu)成,肌纖維類型直接影響肉品質(zhì)特性。運(yùn)動、衰老、營養(yǎng)和高溫應(yīng)激等因素可能通過神經(jīng)內(nèi)分泌信號,調(diào)控胞內(nèi)的Ca2+/CaN、Ca2+/CaMK、AMPK或PPAR信號通路,影響肌纖維類型的轉(zhuǎn)化。目前,這方面的研究主要集中在運(yùn)動醫(yī)學(xué)上,對于運(yùn)動方式、運(yùn)動強(qiáng)度影響肌纖維類型轉(zhuǎn)化的機(jī)制較為清楚,但有關(guān)營養(yǎng)、應(yīng)激等因素影響肌纖維類型轉(zhuǎn)化的研究還處于起始階段。深入研究動物生產(chǎn)過程中影響肌纖維類型轉(zhuǎn)化的因素和機(jī)制,將有助于今后通過營養(yǎng)、環(huán)境或遺傳措施改善肉品質(zhì)。

[1] 高儒松,程志斌,楊正華.肌纖維類型與豬肉品質(zhì)的關(guān)系[J].中國畜牧獸醫(yī),2009,36(4):191-195.

[2] SCHIAFFINO S,REGGIANI C.Fiber types in mammalian skeletal muscles[J].Physiological Reviews,2011,91(4):1447-1531.

[3] PETER J B,BAINARD R J,EDGERTON V R,et al.Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits[J].Biochemistry,1972,11(14):2627-2633.

[4] ASHMORE C R,DOERR L.Comparative aspect of muscle fiber types in different species[J].Experimental Neurology,1971,31(3):408-418.

[5] BROOK M H,KAISER K K.Muscle fiber types:how many and what kind?[J].Archives of Neurology,1970,23(4):369-379.

[6] CHANG K C,F(xiàn)ERNANDESK,DAUNCEY M J.Molecular characterization of a developmentally regulated porcine skeletal myosin heavy chain gene and its 5’regulatory region[J].Journal of Cell Science,1995,108(Pt4):1779-1789.

[7] CHANG K C,F(xiàn)EMANDES K.Developmental expression and 5’end cDNA cloning of the porcine 2x and 2b myosin heavy chain genes[J].DNA Cell Biology,1997,16(12):1429-1437.

[8] SERRA X,GIL F,PEREZ E,et al.A comparison of carsass,meat quality and histochemical characteristics of Iberian and Landrace pigs[J].Livestock Production Science,1998,56(3):215-223.

[9] ESSEN G B,F(xiàn)JELKNER M S.Skeletal muscle characteristics in muscles of pigs in relation to sensory properties of meat[J].Meat Science,1985,13(1):33-45.

[10] 王楚端,陳清明.長白豬、北京黑豬及民豬肌肉組織學(xué)特性研究[J].中國畜牧雜志,1996,32(4):33-34.

[11] IMMONEN K,RUUSUNEN M,HISSA K,et al.Bovine muscle glycogen concentration in relation to finishing diet,slaughter and ultimate pH[J].Meat Science,2000,55(1):25-31.

[12] SCOTT T,MATTHEW H,ANDREW C,et al.Single muscle fiber adaptations with marathon training[J].Journal of Applied Physiology,2006,101(3):721-727.

[13] SUGIURA T,MORIMOTO A,MURAKAMI N.Effects of endurance training on myosin heavy-chain isoforms and enzyme activity in the rat diaphragm[J].Pflügers Archiv-European Journal of Physiology,1992,421(1):77-81.

[14] LEISSON K,JAAKMA U,SEENE T.Adaptation of equine locomotor muscle fiber types to endurance and intensive high speed training[J].Journal of Equine Veterinary Science,2008,28(7):395-401.

[15] JANSSON E,ESBJ?RNSSON M,JACOBS I.Increase in the proportion of fast-twitch muscle fibers by sprint training in males[J].Acta Physiologica Scandinavica,1990,140(3):359-363.

[16] YARASHESKI K E,LEMON PW R,GILLOTEAUX J.Effect of heavy-resistance exercise training on muscle fiber composition in young rats[J].Journal of Applied Physiology,1990,69(2):434-437.

[17] YAMANO S,ETO D,HIRAGA A,et al.Recruitment pattern of muscle fiber type during high intensity exercise(60-100%VO2max)in Thoroughbred horses[J].Research in Veterinary Science,2006,80(1):109-115.

[18] 張宇,滿維祥,湯長發(fā).不同強(qiáng)度運(yùn)動訓(xùn)練對大鼠比目魚肌肌纖維類型與MHC亞型的影響[J].北京體育大學(xué)學(xué)報(bào),2011,34(8):48-56.

[19] LARSSON L,ANSVED T.Effects of ageing on the motor unit[J].Progress in Neurobiology,1995,45(5):397-458.

[20] ?KORJANC D,TRAUB I,PETTE D.Identical responses of fast muscle to sustained activity by low-frequency stimulation in young and aging rats[J].Journal of Applied Physiology,1998,85(2):437-441.

[21] SULLIVAN V K,POWERSSK,CRISWELL D S,et al.Myosin heavy chain composition in young and old rat skeletal muscle:effects of endurance exercise[J].Journal of Applied Physiology,1995,78(6):2115-2120.

[22] LARSSON L,ANSVED T,EDSTR?M L,et al.Effects of age on physiological,immunohistochemical and biochemical properties of fast-twitch single motor units in the rat[J].The Journal of Physiology,1991,443:257-275.

[23] 劉圈煒.熱應(yīng)激對生長豬肌纖維類型和營養(yǎng)利用率的影響[D].博士學(xué)位論文.北京:中國農(nóng)業(yè)科學(xué)院,2007.

[24] RYO K,HISASHI N,YUJI O,et al.Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle[J].Journal of Physiological Sciences,2011,61(2):131-140.

[25] IAN J,MARGARET L.Temperature induced variation in the distribution of different types of muscle fibre in the goldfish(Carassius auratus)[J].Journal of Comparative Physiology,1978,124(2):111-116.

[26] YOSHITAKA O,SUMIO Y,AYUMI G,et al.Effects of heat stress on muscle mass and the expression levels of heat shock proteins and lysosomal cathepsin L in soleus muscle of young and aged mice[J].Molecular and Cellular Biochemistry,2012,369(1/2):45-53.

[27] YAMAGUCHI E,TAKAYOSHI S,HIDEAKI A,et al.Continuous mild heat stress induces differentiation of mammalian myoblasts,shifting fiber type from fast to slow[J].American Journal of Physiology,Cell Physiology,2010,298(1):C140-C148.

[28] DUCHAMP C,COHEN-ADAD F,ROUANET J L,et al.Histochemical arguments for muscular non-shivering thermogenesis in Muscovy ducklings[J].Journal of Physiology,1992,457:27-45.

[29] DAICHI I,YUKIO K,MIHO H.Possible roles of myostatin and PGC-1 in the increase of skeletal muscle and transformation of fiber type in cold-exposed chicks,expression of myostatin and PGC-1 in chicks exposed to cold[J].Domestic Animal Endocrinology,2009,37:12-22.

[30] 趙茹茜,邢鵬,楊倩.母豬限飼對后代斷奶仔豬肌纖維特性的影響[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,34(1):101-106.

[31] BEE G.Effect of early gestation feeding,birth weight,and gender of progeny on muscle fiber characteristics of pigs at slaughter[J].Journal of Animal Science,2004,82(3):826-836.

[32] FAHEY A J,BRAMELD J M,PARR T,et al.The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb[J].Journal of Animal Science,2005,83(11):2564-2571.

[33] LOUIS L,PATRICK E,YVES M B,et al.Early postnatal food intake alters myofiber maturation in pig skeletal muscle1[J].The Journal of Nutrition,2003,133(1):140-147.

[34] 李玥,許雪萍,楊曉靜,等.早期限飼對肉雞肌肉生長及肌纖維類型的影響[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2006,14(6):855-860.

[35] ANNA M B,BRIGITTE P,YVES G.Muscle fibre characteristics in four muscles of growing male cattle;Ⅱ.Effect of castration and feeding level[J].Livestock Production Science,1998,53(1):25-36.

[36] DA COSTA N,MCGILLIVRAY C,BAI Q,et al.Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles[J].The Journal of Nutrition,2004,134(9):2191-2199.

[37] 蘇展.共軛亞油酸對生長育肥豬肉質(zhì)和肌纖維類型的影響[D].碩士學(xué)位論文.重慶:西南大學(xué),2012.

[38] SWOAP SVJ,HUNTER R,STEVENSON E J,et al.The calcineurin-NFAT pathway and muscle fibre-type gene expression[J].American Journal of Physiology,Cell Physiology,2000,279(4):915-924.

[39] 徐象珍.TNF-α 受體ⅠCRD4區(qū)衍生小肽 Pep3對TNF-α誘導(dǎo)乳鼠心肌細(xì)胞肥大的保護(hù)作用及機(jī)制研究[D].碩士學(xué)位論文.廣州:中山大學(xué),2010.

[40] LIU Y W,SHEN T S,RANDALL W R,et al.Signaling pathway in activity-dependent fiber type plasticity in adult skeletal muscle[J].Journal of Muscle Research and Cell Motility,2005,26(1):13-21.

[41] CHAKKALAKAL JV,HARRISON M A,CARBONETTO S,et al.Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice[J].Human Molecular Genetics,2004,13(4):379-388.

[42] PARSONS S A,WILKINS B J,BUENO O F,et al.Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice[J].Molecular Cellular Biology,2003,23(12):4331-4343.

[43] CHIN E R,OLSON E N,RICHARDSON JA,et al.A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type[J].Genes & Development,1998,12(16):2499-2509.

[44] SERRANO A L,MURGIA M,PALLAFACCHINA G,et al.Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(23):13108-13113.

[45] 廖八根,徐勇,薛耀明.鈣調(diào)神經(jīng)磷酸酶在耐力運(yùn)動大鼠骨骼肌纖維類型和大小轉(zhuǎn)變中的作用[J].中國運(yùn)動醫(yī)學(xué)雜志,2008,27(5):551-555,613.

[46] GRONDARD C,BIONDI O,PARISET C,et al.Exercise-induced modulation of calcineurin activity parallels the time course of myofibre transitions[J].Journal of Cellular Physiology,2008,214(1):126-135.

[47] MCKINSEY T A,ZHANG C L,LU J,et al.Signaldependent nuclear export of a histone deacetylase regulates muscle differentiation[J].Nature,2000,408(6808):106-111.

[48] GUERFALI I,MANISSOLLE C,DURIEUX A C,et al.Calcineurin A and CaMKIV transactivate PGC-1α promoter,but differentially regulate cytochrome c promoter in rat skeletal muscle[J].Pflügers Archiv-European Journal of Physiology,2007,454(2):297-305.

[49] SCHIAFFINO S,SANDRI M,MURGIA M.Activitydependent signaling pathways controlling muscle diversity and plasticity[J].Physiology,2007,22(4):269-278.

[50] SUWA M,NAKANO H,KUMAGAI S.Effects of chronic AICAR treatment on fiber composition,enzyme activity,UCP3,and PGC-1 in rat muscles[J].Journal of Applied Physiology,2003,95(3):960-968.

[51] GIBALA M J,MCGEE S L,GARNHAM A P,et al.Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle[J].Journal of Applied Physiology,2009,106(3):929-934.

[52] KIEC'-WILK B,DEMBIN'SKA-KIEC'A,OLSZANECKA A,et al.The selected pathophysiological aspects of PPARs activation[J].Journal of Physiology and Pharmacology,2005,56(2):149-162.

[53] SCHULER M,ALI F,CHAMBON C,et al.PGC1alpha expression is controlled in skeletal muscles by PPARbeta,whose ablation results in fiber-type switching,obesity,type 2 diabetes[J].Cell Metabolism,2006,4(5):407-414.

[54] WANG Y X,ZHANG C L,YU R T,et al.Regulation of muscle fiber type and running endurance by PPARδ[J].PLoS Biology,2004,2(10):1532-1539.

[55] RICHARDSON B A,HUGHES J P,BENKI S.Statistical methods for determining the accuracy of quantitative polymerase chain reaction-based tests[J].Statistics in Medicine,2007,26(4):895-902.

猜你喜歡
肌纖維骨骼肌比例
乳腺炎性肌纖維母細(xì)胞瘤影像學(xué)表現(xiàn)1例
嬰兒顱骨肌纖維瘤/肌纖維瘤病2例
人體比例知多少
頂骨炎性肌纖維母細(xì)胞瘤一例
武定雞肌纖維特性形成規(guī)律研究
毛蕊花苷對遞增負(fù)荷運(yùn)動小鼠骨骼肌損傷的保護(hù)作用
8-羥鳥嘌呤可促進(jìn)小鼠骨骼肌成肌細(xì)胞的增殖和分化
骨骼肌細(xì)胞自噬介導(dǎo)的耐力運(yùn)動應(yīng)激與適應(yīng)
按事故責(zé)任比例賠付
骨骼肌缺血再灌注損傷的機(jī)制及防治進(jìn)展