国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

創(chuàng)傷合并失血性休克實(shí)驗(yàn)動(dòng)物模型研究進(jìn)展

2014-03-25 06:33:24張雪峰
關(guān)鍵詞:腦水腫動(dòng)物模型液體

張雪峰,呂 赤,張 成

沈陽(yáng)軍區(qū)總醫(yī)院普通外科,遼寧 沈陽(yáng) 110016

無(wú)論平時(shí)還是戰(zhàn)時(shí),創(chuàng)傷及失血性休克(hemorrhagic shock,HS)都是外科的常見病理狀態(tài)和重要的研究領(lǐng)域。機(jī)體在遭受創(chuàng)傷后,常合并出現(xiàn)HS,創(chuàng)傷和HS可引起炎性介質(zhì)(如細(xì)胞因子和花生四烯酸等)合成增加、白細(xì)胞粘附分子表達(dá)上調(diào)及多形核粒細(xì)胞在損傷組織內(nèi)聚集,引起復(fù)雜的應(yīng)激免疫級(jí)聯(lián)反應(yīng),進(jìn)而出現(xiàn)一系列的病理生理改變,嚴(yán)重時(shí)可導(dǎo)致多器官功能障礙[1]。為進(jìn)一步闡明致病機(jī)制并尋找搶救治療的突破口,需要選擇一種合適的創(chuàng)傷合并HS動(dòng)物模型作為研究平臺(tái)。盡管一些學(xué)者認(rèn)為動(dòng)物實(shí)驗(yàn)研究的結(jié)果很難應(yīng)用于臨床實(shí)踐,但畢竟動(dòng)物實(shí)驗(yàn)研究可獲得某一特定條件下的臨床信息,而且臨床上許多治療理念的更新和方法的改進(jìn)都源于動(dòng)物實(shí)驗(yàn)的研究成果。因此,本文對(duì)創(chuàng)傷合并HS的實(shí)驗(yàn)動(dòng)物模型研究進(jìn)展從致病機(jī)制和麻醉與否兩方面介紹如下。

1 根據(jù)致病機(jī)制分類

1.1 頭部創(chuàng)傷合并HS模型 嚴(yán)重的頭部創(chuàng)傷常伴隨出現(xiàn)低血壓和腦缺血,這是嚴(yán)重頭部創(chuàng)傷后出現(xiàn)繼發(fā)性腦損害和死亡的主要原因。頭部創(chuàng)傷主要引起兩種類型的腦水腫,即細(xì)胞毒性腦水腫和血管源性腦水腫[2]。細(xì)胞毒性腦水腫是由于細(xì)胞膜Na/K通道的通透性增加,腦實(shí)質(zhì)細(xì)胞腫脹所致;血管源性腦水腫是由于血腦屏障破壞后,血管通透性增加,富含蛋白質(zhì)的液體在細(xì)胞外間隙集聚所致。高處墜落傷、液體沖擊傷、控制性腦皮質(zhì)撞擊傷等多種創(chuàng)傷性顱腦損傷模型均表現(xiàn)為腦水腫[2,3]。在HS合并頭部創(chuàng)傷的動(dòng)物模型中,液體沖擊傷和控制性腦皮質(zhì)撞擊傷模型應(yīng)用最為廣泛[4-6]。為闡明HS與頭部創(chuàng)傷的相互作用關(guān)系,動(dòng)物實(shí)驗(yàn)研究多側(cè)重于探討采用何種復(fù)蘇策略可以減輕繼發(fā)性腦損傷的問(wèn)題,包括應(yīng)用何種液體進(jìn)行復(fù)蘇、應(yīng)用多大量液體進(jìn)行復(fù)蘇及復(fù)蘇多長(zhǎng)時(shí)間等問(wèn)題。血紅蛋白替代物HBOC(hemoglobin-based oxygen carrier)溶液已用于HS合并頭部創(chuàng)傷動(dòng)物模型的研究。結(jié)果顯示,HBOC在豬的HS復(fù)合模型中是非常有效的低容量復(fù)蘇試劑[7-9]。大多數(shù)使用HBOC作為復(fù)蘇液體進(jìn)行HS合并頭部創(chuàng)傷研究的實(shí)驗(yàn)是利用大鼠和豬實(shí)施的[10,11]。也有實(shí)驗(yàn)使用賀斯(一種擇期手術(shù)時(shí)治療低血容量的血漿容量擴(kuò)增劑)和精氨酸血管加壓劑研究其對(duì)豬HS合并液體沖擊性顱腦損傷的影響[12-14]。Bourguignon等[15]利用豬HS合并頂骨凍傷模型研究了早期和延遲液體復(fù)蘇對(duì)預(yù)后的影響。

1.2 胸部創(chuàng)傷合并HS 胸部鈍器傷是導(dǎo)致肺炎、急性肺損傷和急性呼吸窘迫綜合征的獨(dú)立危險(xiǎn)因素,因此,近年來(lái)大部分胸部鈍器傷動(dòng)物模型都被設(shè)計(jì)成肺部挫傷[16]。目前有多種方法可以制成肺挫傷模型,如槍擊傷、墜落傷、沖擊傷和肺擠壓傷等。Davis等[17,18]在研究HS合并肺挫傷(槍擊傷致肺挫傷模型)時(shí)發(fā)現(xiàn),輸入吲哚美辛、環(huán)氧酶(COX)、腺苷調(diào)節(jié)劑和HBOC可以有效控制炎癥級(jí)聯(lián)反應(yīng)的進(jìn)展。Gryth等[19]也用豬HS合并肺損傷模型研究了高滲鹽水復(fù)蘇對(duì)繼發(fā)性肺損傷的影響。Feinstein等[20]設(shè)計(jì)了控制性HS和非控制性HS兩種實(shí)驗(yàn)?zāi)P停靡詸z測(cè)精氨酸加壓素治療豬HS合并肺挫傷模型的效果。Pape等[21]評(píng)估了羊HS合并肺挫傷(肺擠壓傷)后再次遭受髓內(nèi)插釘術(shù)打擊后的肺內(nèi)損害。研究發(fā)現(xiàn),其可導(dǎo)致肺微血管通透性紊亂,如果使用未經(jīng)擴(kuò)眼的小口徑圓釘就可以防止這種情況出現(xiàn)。

1.3 骨折合并HS 臨床上HS經(jīng)常與骨折伴隨發(fā)生,而且近年對(duì)骨折后的免疫反應(yīng)研究顯示,骨折與失血的反應(yīng)非常相似。因此,許多動(dòng)物實(shí)驗(yàn)研究將骨折作為HS模型的追加影響因素進(jìn)行研究[22-28]。Monroy等[29]和Strong等[30]使用小鼠HS合并股骨骨折模型進(jìn)行研究,發(fā)現(xiàn)創(chuàng)傷可以誘導(dǎo)COX-2表達(dá)上調(diào)和PGE2合成增加,而且用選擇性COX-2抑制劑(NS-398)阻滯PGE2合成后可以減輕前炎性細(xì)胞因子的產(chǎn)生和COX-2 mRNA的表達(dá)。Pelinka等[22]對(duì)HS合并雙側(cè)股骨骨折的大鼠進(jìn)行觀察,以明確神經(jīng)元特異性烯醇化酶是否是創(chuàng)傷性顱腦損傷的可靠標(biāo)記物,并檢測(cè)了晶體和膠體兩種復(fù)蘇液體復(fù)蘇后的總肺水量和血管外肺水量。Gray等[31]、Hildebrand等[32]和Mousavi等[33,34]分別用綿羊模型評(píng)估了HS后股骨髓內(nèi)插釘術(shù)對(duì)全身的影響,研究證實(shí),這可導(dǎo)致肺功能不全和顱內(nèi)壓升高。另外,豬和羊也被用于研究HS對(duì)骨折愈合的影響[35,36]。

1.4 軟組織損傷合并HS 有研究者將剖腹探查術(shù)應(yīng)用于HS模型,Chaudry等[37]證實(shí)HS合并腹部探查手術(shù)后的動(dòng)物病死率要顯著高于單純HS的動(dòng)物。另外,Pretorius等[28]在用狒狒研究骨折及軟組織損傷等創(chuàng)傷和HS的實(shí)驗(yàn)中發(fā)現(xiàn),要制成HS合并肺損傷模型就必須同時(shí)造成骨折和軟組織損傷。Cai等[38]建立了鼠的HS合并骨折及軟組織損傷模型,用以觀察器官受到創(chuàng)傷時(shí)肥大細(xì)胞對(duì)免疫功能的影響。

1.5 多發(fā)傷合并HS Howes等[25]用豬制備了多處鈍傷模型(股骨骨折、肝臟撕裂傷和軟組織擠壓傷),以研究傷后注射重組VIIa因子是否可以減少出血。Matsutani等[39]研究證實(shí)小鼠在經(jīng)歷因創(chuàng)傷(骨折、剖腹手術(shù))和HS而制成的創(chuàng)傷性HS后,是否出現(xiàn)肝臟損傷主要取決于年齡。Guan等[24]研究了大鼠HS合并多發(fā)創(chuàng)傷(雙側(cè)股骨骨折和剖腹手術(shù))后器官的凋亡情況。這一模型與臨床實(shí)際非常接近,因此更適用于創(chuàng)傷患者的研究。然而,如果多發(fā)創(chuàng)傷的傷情過(guò)于嚴(yán)重,動(dòng)物會(huì)出現(xiàn)立即死亡。因此,這一模型適于研究多發(fā)創(chuàng)傷后的早期病理改變,但實(shí)驗(yàn)結(jié)果可能難以重復(fù)。

2 根據(jù)是否麻醉分類

2.1 創(chuàng)傷合并HS麻醉模型 目前大多數(shù)HS動(dòng)物模型均采用麻醉動(dòng)物進(jìn)行研究,采用這種動(dòng)物模型具有動(dòng)物依從性好、無(wú)道德倫理問(wèn)題等優(yōu)點(diǎn),但其缺陷是不可避免地要受到麻醉的影響。Mohr等[40]研究了輕度低溫對(duì)豬創(chuàng)傷合并HS凝血功能的影響,結(jié)果發(fā)現(xiàn),創(chuàng)傷合并HS在鎮(zhèn)靜狀態(tài)下輕度低溫對(duì)改善凝血系統(tǒng)功能有積極作用,而不加劇創(chuàng)傷合并HS對(duì)凝血功能造成的不良影響。George等[41]在研究環(huán)境低溫對(duì)豬創(chuàng)傷性HS預(yù)后的影響時(shí)也發(fā)現(xiàn),環(huán)境低溫可以明顯降低實(shí)驗(yàn)動(dòng)物的氧耗,并改善細(xì)胞應(yīng)激和器官功能,有利于休克的復(fù)蘇。這些研究結(jié)果與習(xí)慣認(rèn)識(shí)明顯不同,也與目前臨床上的治療指南相反。本研究認(rèn)為:麻醉引起的誘導(dǎo)性低溫是導(dǎo)致基礎(chǔ)研究結(jié)果與臨床指南不一致的主要原因。由于麻醉引起的誘導(dǎo)性低溫明顯降低了機(jī)體的應(yīng)激反應(yīng),有利于創(chuàng)傷后的復(fù)蘇,因此,環(huán)境低溫可從致傷因素轉(zhuǎn)變?yōu)楸Wo(hù)性因素[42]。鑒于麻醉對(duì)研究結(jié)果的影響,在選擇動(dòng)物模型時(shí)應(yīng)根據(jù)研究目的及需要選擇適當(dāng)?shù)膭?dòng)物模型。

2.2 創(chuàng)傷合并HS非麻醉模型 由于非麻醉動(dòng)物模型貼近臨床實(shí)際,因此研究者很早就開始采用這種模型。但由于這種模型需要特殊處理,同時(shí)又可能涉及道德倫理問(wèn)題,因此限制了其廣泛的應(yīng)用。Vázquez等[43]利用倉(cāng)鼠研究血管活性血紅蛋白溶液對(duì)HS預(yù)后的影響。結(jié)果發(fā)現(xiàn)血管活性血紅蛋白溶液對(duì)穩(wěn)定血流動(dòng)力學(xué)有益。Zhang等[44]研究非麻醉狀態(tài)下鼠失血性休克模型中聚羥亞烴188 (一種具有血液流變學(xué)與細(xì)胞保護(hù)功能的共聚物)的作用,發(fā)現(xiàn)它能延長(zhǎng)失血性休克鼠的生存時(shí)間,減少?gòu)?fù)蘇過(guò)程中液體的需求及組織損傷。Cai等[45]研究清醒時(shí)動(dòng)物失血性休克模型在復(fù)蘇過(guò)程中應(yīng)用乙基丙酮酸鹽比傳統(tǒng)的人工膠體能更迅速地恢復(fù)平均動(dòng)脈壓,降低血清腫瘤壞死因子TNF-α水平,從而進(jìn)一步減輕炎癥反應(yīng)。由于動(dòng)物處于清醒狀態(tài),消除了麻醉可能對(duì)心血管系統(tǒng)和代謝系統(tǒng)的影響,因此,非麻醉動(dòng)物模型更多用于HS在此類方面的研究。但在采取這種動(dòng)物模型時(shí),往往需要做好前期的處理工作。

3 結(jié) 語(yǔ)

在選取動(dòng)物模型研究時(shí),研究者通常愿意選擇同性別、同年齡、同種屬的健康動(dòng)物以減少實(shí)驗(yàn)誤差。然而在臨床實(shí)際條件下,創(chuàng)傷患者的種族、年齡、性別及既往病史等實(shí)際條件各不相同。同時(shí)許多外部因素,如軟組織損傷程度、是否喝酒或吸毒以及環(huán)境低溫等也需考慮。因此,要想設(shè)計(jì)出一種既與臨床實(shí)際非常接近,又能將實(shí)驗(yàn)結(jié)果直接應(yīng)用于人類的創(chuàng)傷合并HS實(shí)驗(yàn)動(dòng)物模型是非常困難的。雖然人類和動(dòng)物之間的差異顯著,但醫(yī)學(xué)的進(jìn)步離不開動(dòng)物實(shí)驗(yàn)研究。了解不同模型的特點(diǎn)和不足,對(duì)于根據(jù)研究目的合理選擇實(shí)驗(yàn)動(dòng)物模型及分析實(shí)驗(yàn)結(jié)果很有裨益。

[1] Benhamou Y,Favre J,Musette P,et al.Toll-like receptors 4 contribute to endothelial injury and inflammation in hemorrhagic shock in mice[J].Crit Care Med,2009,37(5):1724-1728.

[2] Nag S,Manias JL,Stewart DJ.Pathology and new players in the pathogenesis of brain edema[J].Acta Neuropathol,2009,118(2):197-217.

[3] Thal SC,Schaiblze EV,Neuhaus W,et al.Inhibition of proteasomal glucocorticoid receptor degradation restores dexamethasone-mediated stabilization of the blood-brain barrier after traumatic brain injury[J].Crit Care Med,2013,41(5):1305-1315.

[4] Kerby JD,Sainz JG,Zhang F,et al.Resuscitation from hemorrhagic shock with HBOC-201 in the setting of traumatic brain injury[J].Shock,2007,27(6):652-656.

[5] Rice J,Philbin N,Handrigan M,et al.Vasoactivity of bovine polymerized hemoglobin (HBOC-201) in swine with traumatic hemorrhagic shock with and without brain injury[J].Trauma,2006,61(5):1085-1099.

[6] Hayward NM,Tuunanen PI,Immonen R,et al.Magnetic resonance imaging of regional hemodynamic and cerebrovascular recovery after lateral fluid-percussion brain injury in rats[J].J Cereb Blood Flow Metab,2011,31(1):166-177.

[7] Rice J,Philbin N,Light R,et al.The effects of decreasing low-molecular weight hemoglobin components of hemoglobin-based oxygen carriers in swine with hemorrhagic shock[J].J Trauma,2008,64(5):1240-1257.

[8] Mongan PD,Moon-Massat PF,Rentko V,et al.Regional blood flow after serial normovolemic exchange transfusion with HBOC-201 (Hemopure) in anesthetized swine[J].J Trauma,2009,67(1):51-60.

[9] Stern S,Rice J,Philbin N,et al.Resuscitation with the hemoglobin-based oxygen carrier,HBOC-201,in a swine model of severe uncontrolled hemorrhage and traumatic brain injury[J].Shock,2009,31(1):64-79.

[10] Patel MB,Feinstein AJ,Saenz AD,et al.Prehospital HBOC-201 after traumatic brain injury and hemorrhagic shock in swine[J].Trauma,2006,61(1):46-56.

[11] King DR,Cohn SM,Proctor KG.Resuscitation with a hemoglobin-based oxygen carrier after traumatic brain injury[J].Trauma,2005,59(3):553-560.

[12] Crookes BA,Cohn SM,Bonet H,et al.Building a better fluid for emergency resuscitation of traumatic brain injury[J].Trauma,2004,57(3):547-554.

[13] Feinstein AJ,Patel MB,Sanui M,et al.Resuscitation with pressors after traumatic brain injury[J].Am Coll Surg,2005,201(4):536-545.

[14] Sanui M,King DR,Feinstein AJ,et al.Effects of arginine vasopressin during resuscitation from hemorrhagic hypotension after traumatic brain injury[J].Crit Care Med,2006,34(2):433-438.

[15] Bourguignon PR,Shackford SR,Shiffer C,et al.Delayed fluid resuscitation of head injury and uncontrolled hemorrhagic shock[J].Arch Surg,1998,133(4):390-398.

[16] Ozel SK,Ozel HB,Colakolu N,et al.Protective effect of the thoracic cage on parenchyma in response to trauma direction in blunt thoracic trauma:an experimental study[J].Ulus Travma Acil Cerrahi Derg,2010,16(4):287-292.

[17] Davis KA,Fabian TC,Croce MA,et al.Prostanoids:early mediators in the secondary injury that develops after unilateral pulmonary contusion[J].Trauma,1999,46(5):824-831.

[18] Melton SM,Davis KA,Moomey CB Jr,et al.Mediatordependent secondary injury after unilateral blunt thoracic trauma[J].Shock,1999,11(6):396-402.

[19] Gryth D,Rocksén D,Drobin D,et al.Effects of fluid resuscitation with hypertonic saline dextrane or Ringer's acetate after nonhemorrhagic shock caused by pulmonary contusion[J].J Trauma,2010,69(4):741-748.

[20] Feinstein AJ,Cohn SM,King DR,et al.Early vasopressin improves short-term survival after pulmonary contusion[J].Trauma,2005,59(4):876-882.

[21] Pape HC,Dwenger A,Regel G,et al.Pulmonary damage after intramedullary femoral nailing in traumatized sheep-is there an effect from different nailing methods?[J].Trauma,1992,33(4):574-581.

[22] Pelinka LE,Jafarmadar M,Redl H,et al.Neuron-specific-enolase is increased in plasma after hemorrhagic shock and after bilateral femur fracture without traumatic brain injury in the rat[J].Shock,2004,22(1):88-91.

[23] Liu LM,Hu DY,Chen HS,et al.The effect of different volumes of fluid resuscitation on traumatic-hemorrhagic shock at high altitude in the unacclimated rat[J].Shock,2004,21(1):93-96.

[24] Guan J,Jin DD,Jin LJ,et al.Apoptosis in organs of rats in early stage after polytrauma combined with shock[J].Trauma,2002,52(1):104-111.

[25] Howes DW,Stratford A,Stirling M,et al.Administration of recombinant factor VIIa decreases blood loss after blunt trauma in noncoagulopathic pigs[J].Trauma,2007,62(2):311-315.

[26] Majetschak M,Cohn SM,Obertacke U,et al.Therapeutic potential of exogenous ubiquitin during resuscitation from severe trauma[J].Trauma,2004,56(5):991-999.

[27] Aguilar MM,Battistella FD,Owings JT,et al.Posttraumatic lymphocyte response:a comparison between peripheral blood T cells and tissue T cells[J].Trauma,1998,45(1):14-18.

[28] Pretorius JP,Schlag G,Redl H,et al.The′lung in shock′as a result of hypovolemic-traumatic shock in baboons[J].Trauma,1987,27(12):1344-1353.

[29] Monroy MA,Opperman KK,Pucciarelli M,et al.THE PPARgamma ligand 15d-PGJ2 modulates macrophage activation after injury in a murine trauma model[J].Shock,2007,28(2):186-191

[30] Strong VE,Mackrell PJ,Concannon EM,et al.Blocking prostaglandin E2 after trauma attenuates pro-inflammatory cytokines and improves survival[J].Shock,2000,14(3):374-379.

[31] Gray AC,White TO,Clutton E,et al.The stress response to bilateral femoral fractures:a comparison of primary intramedullary nailing and external fixation[J].J Orthop Trauma,2009,23(2):90-97.

[32] Hildebrand F,Giannoudis P,van Griensven M,et al.Secondary effects of femoral I nstrumentation on pulmonary physiology in a standardised sheep model:what is the effect of lung contusion and reaming?[J].Injury,2005,36(4):544-555.

[33] Mousavi M,David R,Schwendenwein I,et al.Influence of controlled reaming on fat intravasation after femoral osteotomy in sheep[J].Clin Orthop Relat Res,2002,394:263-270.

[34] Mousavi M,Kolonja A,Schaden E,et al.Intracranial pressure-alterations during controlled intramedullary reaming of femoral fractures:an animal study[J].Injury,2001,32(9):679-682.

[35] Fu WZ,Mao AR,Luo TH,et al.Changes in endothelial progenitor cells and their implications in multiple organ dysfunction syndrome caused by trauma in pigs[J].Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2010,22(6):346-350.

[36] Schmidt BleekK,Schell H,Kolar P,et al.Cellular composition of the initial fracture hematoma compared to a muscle hematoma:a study in sheep[J].J Orthop Res,2009,27(9):1147-1151.

[37] Chaudry IH,Wang P,Singh G,et al.Rat and mouse models of hypovolemic-traumatic shock[M]//Schlag G,Redl H.Pathophysiology of shock,sepsis,and organ failure.Berlin,Heidelberg:Springer-Verlag,1993:371-383.

[38] Cai C,Cao Z,Loughran PA,et al.Mast cells play a critical role in the systemic inflammatory response and end-organ injury resulting from trauma[J].J Am Coll Surg,2011,213(5):604-615.

[39] Matsutani T,Kang SC,Miyashita M,et al.Liver cytokine production and ICAM-1 expression following bone fracture,tissue trauma,and hemorrhage in middle-aged mice[J].Am J Physiol Gastrointest Liver Physiol,2007,292(1):G268-G274.

[40] Mohr J,Ruchholtz S,Hildebrand F,et al.Induced hypothermia does not impair coagulation system in a swine multiple trauma model[J].J Trauma Acute Care Surg,2013,74(4):1014-1020.

[41] George ME,Mulier KE,Beilman GJ.Hypothermia is associated with improved outcomes in a porcine model of hemorrhagic shock[J].Trauma,2010,68(3):662-668.

[42] Zhang C,Gao GR,Jiang HY,et al.Effects of environmental hypothermia on hemodynamics and oxygen dynamics in conscious swine model of hemorrhagic shock[J].World Journal of Emergency Medicine,2012,3(2):128-134.

[43] Vázquez BY,Hightower CM,Martini J,et al.Vasoactive hemoglobin solution improves survival in hemodilution followed by hemorrhagic shock[J].Crit Care Med,2011,39(6):1461-1466.

[44] Zhang R,Hunter RL,Gonzalez EA,et al.Poloxamer 188 prolongs survival of hypotensive resuscitation and decreases vital tissue injury after full resuscitation[J].Shock,2009,32(4):442-450.

[45] Cai B,Brunner M,Wang H,et al.Ethyl pyruvate improves survival in awake hemorrhage[J].J Mol Med,2009,87(4):423-433.

猜你喜歡
腦水腫動(dòng)物模型液體
肥胖中醫(yī)證候動(dòng)物模型研究進(jìn)展
液體小“橋”
『液體的壓強(qiáng)』知識(shí)鞏固
胃癌前病變動(dòng)物模型復(fù)制實(shí)驗(yàn)進(jìn)展
液體壓強(qiáng)由誰(shuí)定
腦出血并腦水腫患者行甘油果糖聯(lián)合甘露醇治療的效果
潰瘍性結(jié)腸炎動(dòng)物模型研究進(jìn)展
聯(lián)用吡拉西坦與甘露醇對(duì)腦出血所致腦水腫患者進(jìn)行治療的效果分析
層層疊疊的液體
吡拉西坦注射液聯(lián)合甘露醇治療腦出血后腦水腫的療效觀察
开鲁县| 兴义市| 志丹县| 石嘴山市| 财经| 石阡县| 舞钢市| 岱山县| 搜索| 新建县| 南雄市| 财经| 肃宁县| 奉新县| 临沂市| 安阳县| 长垣县| 韶关市| 辉县市| 海安县| 安图县| 玛沁县| 施甸县| 即墨市| 栾城县| 南宫市| 米易县| 上犹县| 海城市| 肇庆市| 鄂温| 新巴尔虎右旗| 平江县| 比如县| 呼伦贝尔市| 彝良县| 库尔勒市| 肇州县| 维西| 雷波县| 珲春市|