国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

西秦嶺溫泉鉬礦床成礦作用時限及其對斑巖型鉬礦床系統(tǒng)分類制約*

2014-04-13 04:24:16邱昆峰李楠RyanTAYLOR宋耀輝宋開瑞韓旺珍張東旭
巖石學(xué)報 2014年9期
關(guān)鍵詞:輝鉬礦造山熱液

邱昆峰 李楠 Ryan D TAYLOR 宋耀輝 宋開瑞 韓旺珍 張東旭

QIU KunFeng1,2,LI Nan1,Ryan D TAYLOR2,SONG YaoHui1,SONG KaiRui1,HAN WangZhen3 and ZHANG DongXu3

1. 中國地質(zhì)大學(xué)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室,北京 100083

2. 美國地質(zhì)調(diào)查局丹佛中心,丹佛 80225

3. 甘肅有色地質(zhì)勘查局天水總隊,天水 741025

1. State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China

2. Denver Federal Center,U. S. Geological Survey,Denver 80225,USA

3. Tianshui General Team of Gansu Nonferrous Metal Geological Exploration Bureau,Tianshui 741025,China

2014-03-01 收稿,2014-05-10 改回.

斑巖系統(tǒng)(包括斑巖型礦床、矽卡巖礦床、碳酸巖交代、沉積巖容礦礦床和淺成低溫?zé)嵋旱V床)提供了全世界75%的銅、95% 的鉬和相當大部分鉛、鋅,和金、銀等貴金屬(Sillitoe,2010),建立精細的斑巖系統(tǒng)成因模型對于尋找更為豐富的金屬礦產(chǎn)尤為重要(Chiaradia et al.,2013)。斑巖型礦床的規(guī)模及其控制因素是斑巖系統(tǒng)成因研究及找礦勘查的關(guān)鍵問題(Chiaradia et al.,2009b;Deng et al.,2014a,b),在熱液系統(tǒng)時限、礦化事件、流體量、金屬來源和構(gòu)造作用等諸多控制因素中,斑巖系統(tǒng)成礦作用時限尤其被重點關(guān)注(Valencia et al.,2005;McInnes et al.,2005;Wang et al.,2011;Yang et al.,2007,2008;Chiaradia et al.,2009a)。在諸多建立斑巖系統(tǒng)成因模型的方法中,同位素地質(zhì)年代學(xué)以其可以幫助我們獲得金屬沉淀時間,進而可置于更為廣泛的年代學(xué)格架之中而更為關(guān)鍵。同時由于斑巖系統(tǒng)是一個涉及巖漿和熱液作用的復(fù)雜系統(tǒng),其持續(xù)時限涵蓋了上地殼巖漿侵位及相關(guān)的熱事件、構(gòu)造和地球動力學(xué)過程(Von Quadt et al.,2011;Yang and Badal,2013;Wang et al.,2014b)。因此,斑巖系統(tǒng)成礦作用時限研究就成為明確成因模型和指導(dǎo)礦產(chǎn)勘查的重中之重(Chiaradia et al.,2013;鄧軍等,2013;Sillitoe,2010)。此外,放射性同位素測年(U-Pb、Re-Os、Ar/Ar 和K/Ar)方法技術(shù)和精確度的迅速提高以及在礦床研究中的廣泛應(yīng)用為我們厘定巖漿-熱液成礦作用時限提供了可能,從而嘗試系統(tǒng)劃分斑巖鉬礦床類型。

秦嶺造山帶大地構(gòu)造位置獨特、地質(zhì)演化復(fù)雜和礦產(chǎn)資源豐富,被譽為中國的“金腰帶”(陳衍景,2010;Deng et al.,2014c),是研究碰撞造山及其成礦機制的理想地區(qū),斑巖型鉬礦床的研究成為構(gòu)建斑巖系統(tǒng)成因模型和揭示造山帶構(gòu)造演化的“金鑰匙”。溫泉鉬礦床是西秦嶺造山帶中典型的斑巖型鉬礦床(圖1b;韓海濤,2009;Zhu et al.,2011),前人研究積累了可靠的印支期成巖、成礦年齡和同位素地球化學(xué)數(shù)據(jù)(李先梓等,1993;張宏飛等,2005;金維浚等,2005;韓海濤,2009;任新紅,2009;王飛,2011;Zhu et al.,2009,2011;Cao et al.,2011),認為溫泉鉬礦床與西秦嶺造山帶廣泛發(fā)育的印支期花崗質(zhì)巖漿事件有關(guān)。詳細的野外調(diào)查發(fā)現(xiàn)溫泉復(fù)式巖體的多期脈動性侵入與溫泉鉬礦床成因關(guān)系密切,因此,更為精細的多期巖漿脈動侵入與鉬成礦作用時限的研究對于我們建立更為精細的斑巖系統(tǒng)成因模型具有關(guān)鍵科學(xué)意義。本文基于詳實的巖體及礦床地質(zhì)研究,系統(tǒng)分析多元同位素系統(tǒng)封閉溫度及其年齡,精細厘定溫泉復(fù)式巖體多期巖漿事件及溫泉鉬礦床巖漿-熱液演化時限,基于西秦嶺中生代地球動力學(xué)背景認識,深入探討溫泉鉬礦床成巖成礦環(huán)境,并結(jié)合世界典型斑巖型鉬礦床(帶)已有研究細化斑巖型鉬礦床產(chǎn)出構(gòu)造背景分類。

1 成礦地質(zhì)背景

西秦嶺造山帶西接?xùn)|昆侖和柴達木板塊,北鄰祁連造山帶,南緣以阿尼瑪卿-勉略縫合帶為界與松潘-甘孜造山帶相接,位于中國大陸構(gòu)造主要地塊與造山帶聚集交接的轉(zhuǎn)換部位,受古亞洲、特提斯和環(huán)太平洋三大構(gòu)造動力學(xué)體系三面圍限(圖1a;張國偉等,2001;Dong et al.,2011),地質(zhì)背景復(fù)雜、印支期花崗巖發(fā)育、成礦地質(zhì)條件優(yōu)越(Mao et al.,2008;陳衍景,2010;Deng et al.,2014c)。

圖1 西秦嶺造山帶地質(zhì)簡圖及其主要大地構(gòu)造單元和中生代花崗質(zhì)巖石分布(a,據(jù)張國偉等,2001;Dong et al.,2011 修編)和溫泉復(fù)式巖體地質(zhì)簡圖(b,據(jù)Cao et al.,2011)NCB-華北板塊;SCB-華南板塊;TLF-郯-廬斷裂Fig.1 Simplified regional geological sketch map of the West Qinling Orogen,showing major tectonic units and Mesozoic granitoids within (a,after Zhang et al.,2001;Dong et al.,2011)and geological sketch map of the Wenquan multiphase batholith (b,after Cao et al.,2011)NCB-North China Block;SCB-South China Block;TLF-Tan-Lu Fault

區(qū)域主要出露古元古代的秦嶺群、中新元古代寬坪群、晚寒武世關(guān)子鎮(zhèn)蛇綠巖、晚寒武世-早奧陶世李子園群、奧陶紀草灘溝群、中-晚泥盆世的李壩群、晚泥盆紀的大草灘群和第三系、第四系(甘肅省地質(zhì)礦產(chǎn)局,1989;張國偉等,2001;陳義兵等,2010)。作為中國大陸中部構(gòu)造巖漿帶的重要組成部分(圖1a;Li et al.,2013),西秦嶺造山帶巖漿活動頻繁,廣泛發(fā)生在前寒武紀早期的基底演化至中新生代陸內(nèi)疊覆造山的各構(gòu)造演化階段(Dong et al.,2011),尤以印支期花崗質(zhì)巖石廣泛出露為特征(李永軍,2005;Wang et al.,2013),并表現(xiàn)出與帶內(nèi)廣泛發(fā)育的熱液金屬礦床的密切時空關(guān)系(Deng et al.,2014c)。產(chǎn)于溫泉復(fù)式巖體中西部的溫泉鉬礦床系該區(qū)內(nèi)與晚三疊世花崗質(zhì)巖漿作用有關(guān)的具有大型前景的斑巖型鉬礦床(韓海濤,2009)。

2 溫泉復(fù)式巖體

溫泉復(fù)式巖體位于甘肅省天水市武山縣溫泉鄉(xiāng)和甘谷縣古坡鄉(xiāng),地表輪廓似圓形,面積約260km2(圖1a),其侵位于中下元古界秦嶺群高綠片巖相火山-沉積變質(zhì)巖系、下古生界李子園群中低綠片巖相火山-沉積變質(zhì)巖系和中上泥盆統(tǒng)李壩群-大草灘群碳酸巖、砂巖和頁巖中(圖1b),切穿近EW 向區(qū)域性大斷裂,斷裂的北東盤圍巖由片巖、大理巖和蛇綠巖組合組成,南西盤為晚泥盆世大草灘群碎屑沉積巖(李永軍,2005)。

基于詳細巖相學(xué)、侵入體接觸關(guān)系等特征和前人認識,明確溫泉復(fù)式巖體由早到晚可劃分為5 個單元(圖1b),呈同心環(huán)狀分布,由內(nèi)向外依次為:Ⅰ單元肉紅色中-細粒黑云母花崗巖,出露于淮子下、鞏家溝和雙錄北等地,主要見于巖體內(nèi)部,一般呈小侵入體分布,細粒花崗結(jié)構(gòu),未見斑晶;Ⅱ單元灰白色細粒黑云母二長花崗斑巖,出露于陳家大灣、銀洞溝、松樹灣等地,主要見于巖體內(nèi)部,偶見斑晶;Ⅲ單元中粒似斑狀二長花崗巖,出露于溫泉鄉(xiāng)、小南岔、莊兒溝和張口石一帶,環(huán)狀分布于巖體次外圈,出露面積占整個巖體20%~25%,以含角閃石礦物為特征,該區(qū)的溫泉熱水源于該套巖石的構(gòu)造裂隙中;Ⅳ單元中-粗粒黑云母二長花崗巖,環(huán)狀分布于巖體最外圍,出露面積占總巖體面積的40% ~45%,發(fā)育巨斑晶、自形程度完好,且有鎂鐵質(zhì)巖墻發(fā)育;Ⅴ單元似斑狀正長花崗巖,呈脈狀、條帶狀散見于早期侵入體中,屬巖漿晚期產(chǎn)物。巖體普遍發(fā)育鎂鐵質(zhì)暗色微粒包體,尤以Ⅲ單元中更為發(fā)育(Cao et al.,2011),其中Ⅱ和Ⅲ及其接觸帶為主要鉬礦化體賦存空間(圖1b;Zhu et al.,2011)。

自1955 年發(fā)現(xiàn)溫泉鉬礦床以來,甘肅省地質(zhì)局武山地質(zhì)隊(1976①甘肅省地質(zhì)局武山地質(zhì)隊. 1976. 武山陽坡山鉬礦檢查評價報告)采用鉀長石K-Ar 法最早獲得干池下和濟梁溝含礦斑巖年齡分別為420Ma 和527Ma,但地質(zhì)體時空關(guān)系顯示巖體均侵入晚泥盆紀大草灘群(圖1),顯然這些同位素結(jié)果有失偏頗,可能是由于后期熱液活動導(dǎo)致K-Ar 系統(tǒng)的重置引起的。近年來多位學(xué)者(李先梓等,1993;韓海濤,2009;張宏飛等,2005;金維浚等,2005;王飛,2011;Cao et al.,2011;Zhu et al.,2011)對溫泉復(fù)式巖體含礦Ⅱ和Ⅲ單元的鋯石U-Pb 定年和黑云母K-Ar 定年表明其為印支晚期巖漿作用,與西秦嶺廣泛發(fā)育的大規(guī)模后碰撞環(huán)境動力學(xué)背景相一致。

3 溫泉礦床地質(zhì)

溫泉鉬礦床北以武山-天水-寶雞深大斷裂帶與祁連造山帶為鄰,南以武山-娘娘壩深大斷裂帶與海西褶皺帶相鄰(圖1)。礦區(qū)內(nèi)出露中下元古界秦嶺群、下古生界李子園群、上古生界中泥盆統(tǒng)李壩群、上泥盆統(tǒng)大草灘群、第三系和第四系等,以中下元古界秦嶺群和上泥盆統(tǒng)大草灘群為主,各地層之間以不整合或斷層接觸。礦區(qū)構(gòu)造主要由斷裂和節(jié)理裂隙組成,共同控制鉬礦體的產(chǎn)出(圖2a)。礦體形態(tài)呈似層狀、不規(guī)則脈狀(圖2b),礦石發(fā)育細脈狀和浸染狀構(gòu)造(圖3a,b,g-i),輝鉬礦石英脈主要充填于斑巖內(nèi)原生節(jié)理、破碎蝕變帶和裂隙中(圖3),具有典型的裂隙充填特征,Mo平均品位0.053 ×10-2(韓海濤,2009)。礦石礦物有輝鉬礦、黃鐵礦和黃銅礦,以及少量方鉛礦、閃鋅礦、斑銅礦、白鎢礦、褐鐵礦、鈦鐵礦等,脈石礦物為石英、鉀長石、螢石和方解石等。結(jié)合礦物共生及石英硫化物脈穿切關(guān)系,劃分為5 個階段(圖3a-i):Ⅰ早期貧礦石英脈(EBV),Ⅱ石英-輝鉬礦脈(Qz-Mol),Ⅲ石英-黃鐵礦脈(Qz-Py),Ⅳ石英-多金屬(黃銅礦±黃鐵礦±輝鉬礦±閃鋅礦±方鉛礦)脈(Qz-PM)和Ⅴ晚期貧礦石英-方解石脈(LBV)。其中主成礦階段早期,巖漿尚未完全固結(jié),為不連續(xù)和不規(guī)律的細脈和網(wǎng)脈,發(fā)育單向固結(jié)結(jié)構(gòu)(Unidirectional solidification texture,簡稱UST;圖3d),為初始出溶流體冷凝沉淀的產(chǎn)物,暗示溫泉鉬礦床巖漿-熱液過渡期(Harris et al.,2004;Chang and Meinert,2004)。

溫泉鉬礦床圍巖蝕變分帶發(fā)育良好,從內(nèi)向外依次為鉀化帶、絹英巖化帶和青磐巖化帶并在靠近絹英巖化帶附近有輕微的泥化發(fā)育,但界限不明顯,鉬礦(化)體主要分布在鉀化帶和絹英巖化帶(圖2a)。鉀化帶主要蝕變礦物為黑云母、鉀長石、石英和絹云母,礦物組合為輝鉬礦、黃銅礦和少量黃鐵礦、斑銅礦,輝鉬礦集合體主要發(fā)育在石英脈與圍巖接觸部位、石英脈內(nèi)部發(fā)育較小集合體(圖3c),在圍巖內(nèi)部發(fā)育浸染狀輝鉬礦顆粒(圖3a);絹英巖化帶發(fā)育石英、絹云母和黃鐵礦,礦物組合為黃銅礦和少量黃鐵礦、斑銅礦、閃鋅礦、方鉛礦(圖3f),大顆粒黃鐵礦內(nèi)部裂隙及邊部發(fā)育黃鐵礦、方鉛礦和閃鋅礦;青磐巖化帶主要蝕變礦物為綠泥石、綠簾石、石英和方解石,發(fā)育黃鐵礦和黃銅礦(圖3e),石英脈中發(fā)育大顆粒黃鐵礦,且均比較明顯發(fā)育裂隙,并被后階段的金屬硫化物充填。

4 多元同位素系統(tǒng)地質(zhì)年齡

圖3 溫泉斑巖型鉬礦床礦石特征及礦物成生世代正文及圖中礦物縮寫據(jù)Whitney and Evans,2010Fig. 3 Photomicrographs of ores from the Wenquan porphyry molybdenum deposit,showing vein stages and features of mineralizationMineral abbreviations through the text,including those in the figures,are after Whitney and Evans,2010

礦床是復(fù)雜地質(zhì)作用的歷史產(chǎn)物,形成后又經(jīng)歷了各種變化和改造,當前礦床學(xué)研究迫切需要同時開展對成礦作用過程和變化、保存兩個方面的工作,以提高礦產(chǎn)預(yù)測的能力(翟裕生,2014;Sillitoe,2010;鄧軍等,2010)。相對單一同位素地質(zhì)年齡而言,U-Pb(Tc約900℃;Lee et al.,1997;Cherniak and Watson,2000)、K-Ar (Tc約300 ± 50℃;McDougall and Harrison,1999)和Re-Os(Tc介于300 ~500℃;McDougall and Harrison,1999;Suzuki et al.,1996)多元系統(tǒng)具有更廣泛的封閉溫度區(qū)間,可以精確厘定巖體多期巖漿結(jié)晶及冷卻、成礦熱事件年齡(Geyh and Schleicher,1990;邱昆峰和楊立強,2011 及其引文)。巖漿-熱液成礦作用發(fā)展變化的精細刻畫已經(jīng)成為斑巖系統(tǒng)理論研究與礦產(chǎn)勘查的重要方面(Selby and Cresser,2001;Valencia et al.,2005;Chiaradia et al.,2013;Wang et al.,2014a),并已經(jīng)在智利、伊朗和印度尼西亞等地的典型斑巖型礦床成功應(yīng)用(McInnes et al.,2005 及其引文)。為深入理解溫泉斑巖型鉬礦床的地球動力學(xué)背景與成礦環(huán)境、精確厘定成礦事件的發(fā)生時間與作用時限,本文進一步解釋剖析已有鋯石U-Pb、黑云母K-Ar 和輝鉬礦Re-Os 同位素年齡(表1)。

4.1 巖漿作用

鋯石U-Pb 定年系統(tǒng),以其高封閉溫度體系及鋯石的強難熔性和相對富含Th 和U 等放射性元素、而貧普通Pb 等特征被認為是目前最精確的定年方法(Begemann et al.,2001;Gradstein et al.,2005;Schoene et al.,2006),盡管我們永遠無法知道巖漿在1000℃以上侵位到冷卻至~900℃的時間(王非等,2014),但相對于其它同位素系統(tǒng),其仍然是巖體侵位年齡最準確的反應(yīng)者。

溫泉斑巖型鉬礦床含礦巖體(Ⅱ和Ⅲ單元)SHRIMP 及LA-ICP-MS 鋯石U-Pb 年齡結(jié)果顯示其侵位年齡集中在224.6 ±2.5Ma 到216.2 ±1.7Ma,持續(xù)約8Myr,明顯發(fā)育峰期為~223Ma 和~217Ma 的兩期巖漿作用(圖4)。同時,由于鋯石U-Pb 體系的封閉溫度明前高于鉬成礦作用溫度的上限,因此,該年齡代表了含礦巖體的結(jié)晶年齡,且與溫泉復(fù)式巖體在構(gòu)造、地層等時空關(guān)系相吻合,對應(yīng)西秦嶺造山帶廣泛發(fā)育的印支晚期巖漿活動(Wang et al.,2013 及其引文)。

4.2 成礦時間

輝鉬礦(MoS2)是許多熱液金屬礦床中的常見礦物,且為迄今被發(fā)現(xiàn)的最富Re 的硫化物,Re 具有親硫特性且與Mo 具有相似的離子半徑,所以在輝鉬礦形成過程中Re 以類質(zhì)同相形式替代Mo 進入輝鉬礦晶格中;同時其中的普通Os相對放射成因187Os 可以忽略不計(Suzuki et al.,1996;Markey et al.,2007),也就是說輝鉬礦中187Os 完全是187Re 的衰變產(chǎn)物,所以輝鉬礦中的187Os 與187Re 的含量關(guān)系直接反應(yīng)其形成年代(Stein et al.,2001);此外,輝鉬礦Re-Os 同位素體系封閉良好,受后期高溫流體和成礦后熱液流體改造微弱(Selby and Creaser,2001),已經(jīng)被證實在變質(zhì)環(huán)境(Stein et al.,1998)甚至是麻粒巖相(Bingen and Stein,2003)都得以保存,使得輝鉬礦Re-Os 系統(tǒng)被認為是目前直接確定金屬硫化物礦床成礦年代最有力的定年手段(屈文俊和杜安道,2003;Stein et al.,2003)。

溫泉斑巖型鉬礦床輝鉬礦Re-Os 同位素測年結(jié)果顯示其模式年齡為212.7 ±2.6Ma 到215.1 ±2.6Ma(表1;圖4),考慮到不同年齡結(jié)果的誤差,其與早期的含礦巖體Ⅲ單元年齡具有明顯的重疊(圖5),反映了鉬成礦作用近于同時或稍晚于Ⅲ單元巖體侵位。

表1 西秦嶺造山帶溫泉斑巖型鉬礦床成巖、成礦同位素年齡Table 1 Compilation of the isotopic chronological data for magmatic rocks and mineralization in the Wenquan porphyry molybdenum deposit,West Qinling Orogen

圖4 西秦嶺造山帶溫泉斑巖型鉬礦床地質(zhì)年齡鋯石U-Pb 年齡引自王飛(2011),張宏飛等(2005),金維浚等(2005),Zhu et al. (2011)和Cao et al. (2011);黑云母K-Ar 年齡引自韓海濤(2009)和李先梓等(1993);輝鉬礦Re-Os 年齡引自Zhu et al. (2009)和韓海濤(2009)Fig.4 Geochronology data Wenquan porphyry molybdenum deposit,West Qinling orogenZircon U-Pb ages from Wang (2011),Zhang et al. (2005),Jin et al. (2005),Zhu et al. (2011)and Cao et al. (2011);biotite KAr ages from Han (2009)and Li et al. (1993);molybdenite Re-Os ages from Zhu et al. (2009)and Han (2009)

圖5 西秦嶺造山帶溫泉斑巖型鉬礦床三疊紀地質(zhì)、熱事件時序簡圖(時間標度據(jù)Dong et al.,2011;Wang et al.,2013;黃雄飛等,2013)灰色陰影區(qū)分別代表島弧環(huán)境和后碰撞環(huán)境;數(shù)據(jù)來源同圖4Fig.5 Schematic evolution diagram showing the sequences of major geological and thermal events during Triassic at the Wenquan porphyry molybdenum deposit, West Qinling Orogen (the time scales are those of Dong et al.,2011;Wang et al.,2013;Huang et al.,2013)Gray shades represent the arc setting related to subduction of the Mianlue Ocean between the SQL and SCB,and the post-collosion setting between the SQB (or NCB)and SCB,respectively. Data sources as in Fig.4. NCB-North China Block;SCB-South China Block;NQB-North Qinling Block;SQB-South Qinling Block

4.3 巖體冷卻

含鉀巖石或礦物K-Ar 定年系統(tǒng)需要樣品具有同時性和同源性,且在樣品形成后保持同位素體系相對封閉,同時所測樣品必須具有相同的同位素初始比值(王非等,2014)。若其構(gòu)成一條良好的通過原點的等時線,表明黑云母在結(jié)晶以后,放射成因Ar 在礦物晶格中保存均勻、完好,沒有遭受熱力擾動,則該年齡為巖體結(jié)晶年齡;但該系統(tǒng)很容易受后期構(gòu)造熱事件干擾而部分重置,使得礦物核心部分早期積累的放射性成因Ar 發(fā)生部分丟失,其年齡則代表樣品重新冷卻至黑云母封閉溫度(300 ± 50℃;McDougall and Harrison,1999)后所經(jīng)歷的時間(楊立強等,2011;王非等,2014)。Selby and Creaser (2001)對加拿大英屬哥倫比亞Endako 斑巖型鉬礦床的研究表明經(jīng)歷高溫(~440℃)、中等鹽度熱液流體事件后,巖漿成因的黑云母與熱液成因的黑云母具有相一致的年齡,且該年齡與后期低溫?zé)嵋菏录憫?yīng),反映了斑巖系統(tǒng)后期熱液活動對早期巖漿成因黑云母K-Ar 系統(tǒng)的重置。

溫泉復(fù)式巖體的黑云母K-Ar 年齡集中于226 ~207Ma,并且主要發(fā)育峰值為~223Ma 和~208Ma 兩組(圖4)。盡管~223Ma 這組年齡與溫泉巖體含礦Ⅱ單元具有相近的年齡值(圖5),但是由于黑云母封閉溫度約為300℃,所以該年齡更可能代表的是更早期巖體(溫泉復(fù)式巖體Ⅰ單元)侵位以后,經(jīng)歷后期熱事件,樣品重新冷卻至300℃(黑云母封閉溫度)所經(jīng)歷的時間;同時,~208Ma 年齡也可能代表了含礦Ⅱ單元侵位(~223Ma)以后,受成礦熱事件干擾黑云母的結(jié)晶年齡,可能代表了該期巖體的冷卻年齡。此外,一個216Ma的黑云母K-Ar 年齡與巖漿-熱液成礦年齡相吻合(圖5),不排除其為熱液黑云母對溫泉鉬礦床成礦熱液活動的反應(yīng)。

5 討論

5.1 溫泉鉬礦床成巖成礦環(huán)境與構(gòu)造意義

碰撞造山帶的演化一般都要經(jīng)歷擠壓、擠壓向伸展轉(zhuǎn)變和伸展三個階段(Leech,2001;Chen et al.,2007;鄧軍等,2011;Yang et al.,2009,2014),在擠壓縮短向伸展減薄的構(gòu)造體制轉(zhuǎn)換過程中,造山帶處于減壓增溫的特殊構(gòu)造體制,應(yīng)力由擠壓向伸展轉(zhuǎn)變過程中會引起物質(zhì)的部分熔融和流體產(chǎn)生,進而導(dǎo)致強烈的流體和巖漿作用,是發(fā)生成巖、成礦作用的有利階段(Vanderhaeghe and Teyssier,2001;Deng et al.,2009;楊立強等,2010,2014a,b)。華北和華南板塊的俯沖和/或碰撞造山對應(yīng)西秦嶺造山帶早中生代的兩期巖漿作用,即島弧環(huán)境的印支早期巖漿作用(250 ~240Ma,Wang et al.,2013;245 ~234Ma,黃雄飛等,2013)和后碰撞環(huán)境的印支晚期巖漿作用(225 ~185Ma,Wang et al.,2013;225~205Ma,黃雄飛等,2013)。

溫泉巖體侵位于商丹縫合帶以南,呈橢圓形,且沒有明顯的巖漿面理和變形面理,發(fā)育暗色閃長質(zhì)微粒包體且沒有明顯定向,同時在巖體邊界沒有明顯的接觸變形帶,這些特征與擠壓環(huán)境下主動侵位巖體的構(gòu)造形式明顯不同,暗示巖體形成于相對拉張環(huán)境下的被動侵位(Wang et al.,2000)。鋯石U-Pb 同位素定年顯示溫泉花崗巖含礦單元侵位于224.6 ±2.5Ma 到216.2 ±1.7Ma,對應(yīng)區(qū)域上后碰撞環(huán)境下早中生代晚期巖漿作用,至少比碰撞峰期晚10 ~20Myr,這與Sylverler(1998)對典型碰撞造山帶的研究認為后碰撞花崗巖的出現(xiàn)比碰撞峰期年齡晚10 ~15Myr(如阿樂卑期)或26Myr(如喜馬拉雅地區(qū))相一致。輝鉬礦Re-Os 成礦年代學(xué)研究顯示鉬成礦作用發(fā)生于212.7 ±2.6Ma 到215.1 ±2.6Ma,與與成巖年齡有所重疊,反映晚三疊世鉬成礦與花崗質(zhì)巖漿作用密切時空關(guān)系,這也與典型斑巖型鉬礦床特征(Misra,2000;鄧軍等,2012)相一致,巖體侵位于碰撞后伸展環(huán)境或是由同碰撞向后碰撞的轉(zhuǎn)接階段,成礦即發(fā)生于華南板塊與華北板塊碰撞造山過程擠壓與伸展交替出現(xiàn)、殼幔作用強烈的伸展期(圖5),暗示后碰撞造山環(huán)境下巖漿-熱液成礦作用的持續(xù)性。

5.2 溫泉鉬礦床成礦作用時限

斑巖型鉬礦床在時空和成因上都與斑狀花崗質(zhì)巖體有關(guān),是由巖漿在結(jié)晶過程中釋放出的富金屬熱液形成的,巖漿-熱液在短期內(nèi)復(fù)雜的脈動性活動及可能疊加的構(gòu)造熱事件(構(gòu)造、蝕變和礦化)使得斑巖系統(tǒng)巖漿-熱液演化的確定顯得尤為關(guān)鍵(Valencia et al.,2005;McInnes et al.,2005;Chiaradia et al.,2013)。在熱液系統(tǒng)時限、礦化事件、流體量、金屬來源和構(gòu)造作用等諸多控制因素中,斑巖系統(tǒng)成礦作用時限尤其被重點關(guān)注(Valencia et al.,2005;McInnes et al.,2005;Wang et al.,2011;Yang et al.,2007,2008)。

鋯石U-Pb、輝鉬礦Re-Os 和黑云母K-Ar 多元同位素體系的聯(lián)合應(yīng)用精確厘定了溫泉斑巖型鉬礦床的巖漿-熱液演化時限(圖5)。溫泉復(fù)式巖體Ⅱ(黑云母二長花崗斑巖)和Ⅲ(似斑狀二長花崗巖)單元為主要含礦巖體,鋯石U-Pb 定年顯示其分別侵位于~223Ma 和~217Ma,反映了溫泉斑巖型鉬礦床巖漿活動的“多期性”。輝鉬礦Re-Os 同位素測年顯示其具有209.7 ~215.1Ma 的模式年齡,與早期的含礦巖體Ⅲ單元年齡具有明顯的重疊,反映了鉬成礦作用在時間近于同時或稍晚于該巖體侵位,同時在該巖體內(nèi)構(gòu)造裂隙中發(fā)育的輝鉬礦石英脈發(fā)育單向固結(jié)結(jié)構(gòu)(圖3d),代表了巖漿-熱液過渡期初始出溶流體冷凝沉淀的產(chǎn)物。采自溫泉巖體不同巖相單元的黑云母K-Ar 年齡主要發(fā)育峰值為~223Ma和~208Ma 兩組年齡,如前所述,基于地質(zhì)體明確時空關(guān)系,結(jié)合多元同位素體系的封閉溫度,我們認為,~223Ma 這組年齡可能代表更早期巖體(溫泉復(fù)式巖體Ⅰ單元)侵位以后,經(jīng)歷后期熱事件,樣品重新冷卻至300℃(黑云母封閉溫度)所經(jīng)歷的時間;同時,~208Ma 年齡也可能代表了含礦Ⅱ單元巖體的冷卻年齡。單個216Ma 的黑云母K-Ar 年齡可能為熱液黑云母,并反應(yīng)溫泉鉬礦床成礦時間。

圖6 典型斑巖型鉬礦床成礦時間及構(gòu)造背景數(shù)據(jù)引自秦克章等,2008;Sillitoe,2010;Mao et al. ,2011;Zeng et al. ,2012;Li et al. ,2012;孫燕等,2012 及其引文Fig.6 Mineralization ages and tectonic settings of typical porphyry molybdenium depositsData from Qin et al. ,2008;Sillitoe,2010;Mao et al. ,2011;Zeng et al. ,2012;Li et al. ,2012;Sun et al. ,2012 and references therein

綜上所述,巖漿-熱液演化時限的厘定反映了溫泉復(fù)式巖體含礦斑巖巖漿侵位結(jié)晶、冷卻事件與熱液成礦時間上有所重疊,成礦作用時限約8Myr(圖5),與魚池嶺超大型斑巖系統(tǒng)(Li et al.,2012)、智利Rio Blanco 斑巖型礦床(Deckart et al.,2005)、Nambijia 金矽卡巖和Pangui 斑巖型銅礦床(Chiaradia et al.,2009b)和岡底斯斑巖成礦帶(侯增謙等,2003;李金祥等,2007)巖漿-熱液演化過程相似。同時,伴隨著熱液成礦作用之后巖體的快速冷卻,這也與斑巖型礦床巖體淺部地殼熱演化特點相吻合(McInnes et al.,2005)。

5.3 細化斑巖型鉬礦床產(chǎn)出構(gòu)造背景分類

就時空分布而言,在世界范圍內(nèi),斑巖型鉬(銅)礦床時空分布廣泛,時間上自太古代以來均有成礦,但主要集中于中、新生代;空間上集中分布于環(huán)太平洋、特提斯和古亞洲三大構(gòu)造成礦域(Sillitoe,2010;鄧軍等,2013;翟裕生,2014)。Climax 型鉬礦床主要形成于新生代,一般在70 ~25Ma,多分布在太平洋東岸北部陸緣弧后環(huán)境,代表性礦床多產(chǎn)出于Colodaro 鉬礦帶;Endako 型鉬礦床多形成于晚侏羅世(100 ~70Ma)和早白堊世(60 ~50Ma),較年輕的巖漿弧則很少發(fā)現(xiàn)該類礦床,以加拿大Boss Mt 和Endako 等礦床為代表(Seedorff et al.,2005)。我國的斑巖型鉬(銅)礦床多形成于中生代,東秦嶺鉬成礦帶集中發(fā)育233 ~221Ma、148 ~138Ma 和131 ~112Ma 鉬礦床,東北地區(qū)東興蒙成礦帶則主要產(chǎn)出早三疊世(248 ~242Ma)、侏羅紀(178 ~146Ma)和早白堊世(142 ~131Ma)鉬礦床(Mao et al.,2011;Zeng et al.,2012;圖6)。

就成礦構(gòu)造背景而言,Sillitoe(1980)最早根據(jù)與成礦有關(guān)侵入巖化學(xué)成分和構(gòu)造背景將其劃分為與裂谷(弧后環(huán)境)有關(guān)和俯沖(大陸邊緣環(huán)境)有關(guān)的斑巖型鉬礦床,隨后又出現(xiàn)花崗閃長巖和花崗巖鉬礦床(Mutschler et al.,1981)、鈣堿性和堿鈣-堿性細脈狀鉬礦床(Westra et al.,1981)、石英二長巖型和Climax 型鉬礦床、Climax 型低F 型和高F 型斑巖型鉬礦床(Cox and Singer,1986)和未分異常二長花崗巖和高硅流紋巖-堿性巖系列斑巖型礦床(包括Climax 型、過渡和堿性三個亞類型)(Carten et al.,1993)等多種分類方案。Misra(2000)在總結(jié)前人基礎(chǔ)上,按照產(chǎn)出環(huán)境和礦石品位對產(chǎn)于北美和南美地區(qū)的斑巖型鉬礦床劃分為兩種類型:(1)與板塊消減有關(guān)的、低品位(平均品位為0.066%)Endako 型鉬礦。該類型礦床規(guī)模較小,具有低F(0.05% ~0.15%)、含少量W、缺少Sn 的特征,有時伴生Cu,代表性礦床有加拿大Cordillera 的Endako 和Boss Mt、美國的Bingham 鉬礦;(2)高品位(多數(shù)>0.15%)、與板內(nèi)裂谷有關(guān)的Climax 型鉬礦床。該類型礦床規(guī)模較大,世界上分布較廣,富F(0.5% ~5%),以出現(xiàn)螢石和黃玉、常見W 和Sn為特征,一般不伴生Cu。代表性礦床是北美Colorado 礦帶的Climax 鉬礦(907Mt@ 0.24%)和Henderson 鉬礦(727Mt@0.24%),其他礦床還有Pine Grove、Cave Peak 等(Cooke et al.,2005)。

近年來,隨著我國東秦嶺世界最大鉬成礦帶及東北地區(qū)大量斑巖型鉬礦床研究程度的提高(Mao et al.,2011;Zeng et al.,2012;Li et al.,2012 及其引文),已經(jīng)發(fā)現(xiàn)已有斑巖型鉬礦床分類不臻完善,因此建立更為完備細化的斑巖型鉬礦床產(chǎn)出構(gòu)造背景顯得尤為重要。

目前識別的斑巖型鉬(銅)礦床產(chǎn)出構(gòu)造背景主要有擠壓環(huán)境和伸展環(huán)境兩類,前者進一步劃分為與大洋俯沖(圖7A)和大陸碰撞(圖7B)環(huán)境(表2),典型代表分別為Endako鉬礦床和西藏岡底斯的沙讓斑巖型鉬礦床(秦克章等,2008)。伸展環(huán)境進一步劃分為后碰撞(圖7C)和陸緣弧后(圖7A)及板內(nèi)裂谷(圖7D)伸展背景(表2)。Climax 和Henderson 鉬礦床產(chǎn)在陸緣弧后Rio Grande(Sillitoe,2010),與Kula 和Farallon 板塊西北向俯沖角度變大有關(guān)。Cave Peak 鉬礦床產(chǎn)于大陸裂谷。東興蒙造山帶鉬礦床分別形成于三疊紀西伯利亞板塊和華北板塊的同碰撞構(gòu)造背景(EXMT,圖6;大陸碰撞環(huán)境,圖7B)、侏羅紀伊澤那崎板塊向西的斜向俯沖引起的擠壓環(huán)境(EXMJ,圖6;大洋俯沖環(huán)境,圖7A)和早白堊世中國東部加厚巖石圈拆沉、軟流圈上涌等引起的板內(nèi)伸展環(huán)境(EXMK,圖6;圖7D)。東秦嶺世界最大鉬礦帶發(fā)育晚三疊世、晚侏羅-早白堊世和早白堊-中白堊世三期鉬成礦作用,對應(yīng)的地球動力學(xué)背景分別為可能與同期堿性巖體有關(guān)的陸內(nèi)拉伸環(huán)境(EQLT,圖6;主要為熱液碳酸鹽脈鉬礦床)和伊澤那崎板塊向西的斜向俯沖引起的擠壓環(huán)境(EQLJ,圖6;大洋俯沖環(huán)境,圖7A)及中國東部加厚巖石圈拆沉、軟流圈上涌等引起的板內(nèi)伸展環(huán)境(EQLK,圖6;圖7D)。

圖7 斑巖型鉬(銅)礦床產(chǎn)出構(gòu)造環(huán)境示意圖(礦床名稱同圖6)Fig.7 Schematic diagrams showing the tectonic settings of porphyry Mo-Cu deposits (symbols of deposits as in Fig.6)

表2 細化斑巖型鉬(銅)礦床系統(tǒng)分類(礦床名稱同圖6)Table 2 Revised classification of porphyry molybdenum deposits (symbols of deposits as in Fig.6)

總體來說,在大洋俯沖→大陸碰撞→后碰撞→板內(nèi)旋回的四個階段均可以產(chǎn)生規(guī)模的斑巖型鉬(銅)礦床,其主要形成于旋回起始和結(jié)束階段的偏張性的裂谷和伸展環(huán)境,由于該階段應(yīng)力比較穩(wěn)定,更有利于巖漿長時間的結(jié)晶分異,由擠壓向伸展過渡的構(gòu)造體制轉(zhuǎn)換是其形成的有利環(huán)境(鄧軍等,2000;Deng et al.,2014a;楊立強等,2014b),因此,世界范圍內(nèi)的Climax 和Henderson 以及東秦嶺世界最大斑巖型鉬礦帶的主要鉬成礦均集中于弧后伸展、后碰撞伸展和陸內(nèi)裂谷等伸展背景。同時,斑巖型鉬(銅)礦床多產(chǎn)于靠近大陸內(nèi)部,表現(xiàn)出與大陸地殼明顯的親和性,基底既可以是古老陸殼的重熔也可以是新生陸殼。同時,對比發(fā)現(xiàn),就產(chǎn)出鉬礦床的規(guī)模和數(shù)量而言,擠壓環(huán)境也遠不如伸展背景。

6 結(jié)論

(1)鋯石U-Pb 定年顯示溫泉復(fù)式巖體含礦斑巖單元分別侵位于~223Ma 和~217Ma,持續(xù)約8Myr;輝鉬礦Re-Os 年齡為212.7 ±2.6Ma 到215.1 ±2.6Ma,成礦與成巖同期或稍晚,響應(yīng)華北與華南板塊全面對接后秦嶺造山帶構(gòu)造體制由碰撞到后碰撞的轉(zhuǎn)換階段。

(2)多元同位素定年系統(tǒng)(鋯石U-Pb、輝鉬礦Re-Os 和黑云母K-Ar 體系)準確刻畫巖體侵位、熱液成礦與冷卻事件有所重疊,巖漿-熱液分異演化充分,且具有較高的冷卻速率,精確厘定溫泉斑巖系統(tǒng)巖漿活動的“多期性”、成礦事件的“瞬時性”和成礦作用的“持續(xù)性”。

(3)細化斑巖型鉬(銅)礦床分類方案,即產(chǎn)于擠壓背景的大洋俯沖和大陸碰撞環(huán)境礦床及產(chǎn)于伸展背景的后碰撞、陸緣弧后和板內(nèi)裂谷環(huán)境礦床。

(4)明確在大洋俯沖→大陸碰撞→后碰撞→板內(nèi)裂谷旋回的四個階段均可以產(chǎn)生規(guī)模的斑巖型鉬(銅)礦床,擠壓向伸展過渡的構(gòu)造體制轉(zhuǎn)換階段以其應(yīng)力比較穩(wěn)定,更有利于巖漿長時間的結(jié)晶分異,而尤其是大型礦床形成的有利環(huán)境。

致謝 論文的完成得益于與Richard J Goldfard 和Heather Lowers 研究員、邱駿挺、孟健寅和張良博士的有益探討;野外工作得到甘肅有色地質(zhì)勘查局周俊烈、趙生貴高工等的大力幫助;承蒙兩位審稿專家提出建設(shè)性的修改意見;在此一并表示衷心的感謝。本論文還得到國家留學(xué)基金資助。

Begemann F,Ludwig KR,Lugmair GW,Min K,Nyquist LE,Patchett PJ,Renne PR,Shih CY,Villa IM and Walker RJ. 2001. Call for an improved set of decay constants for geochronological use.Geochimica et Cosmochimica Acta,65(1):111 -121

Bingen B and Stein H. 2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites,S Norway. Earth and Planetary Science Letters,208(3 - 4):181-195

Bureau of Geology and Mineral Resources of Gansu Province. 1989.Regional Geology of Gansu Province. Beijing:Geological Publishing House,1 -692 (in Chinese with English abstract)

Cao XF,Lü XB,Yao SZ,Mei W,Zou XY,Chen C,Liu ST,Zhang P,Su YY and Zhang B. 2011. LA-ICP-MS U-Pb zircon geochronology,geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling,China. Ore Geology Reviews,43(1):120 -131

Carten RB,White WH and Stein HJ. 1993. High-grade granite-related molybdenum systems:Classification and origin. In:Kirkham RV,Sinclair WD,Thorpe RI and Duke JM (eds.). Mineral Deposit Modeling. Geological Association of Canada Special Paper,40:521-554

Chang ZS and Meinert LD. 2004. The magmatic-hydrothermal transition:Evidence from quartz phenocryst textures and endoskarn abundance in Cu-Zn skarns at the Empire Mine,Idaho,USA. Chemical Geology,210(1 -4):149 -171

Chen YB,Zhang GW,Pei XZ,Lu RK,Liang WT and Guo XF. 2010.Discussion on the formation age and tectonic implications of Dacaotan Group in West Qinling. Acta Sedimentologica Sinca,28(3):53 -58 (in Chinese with English abstract)

Chen YJ,Chen HY,Zaw K,Pirajno F and Zhang ZJ. 2007.Geodynamic settings and tectonic model of skarn gold deposits in China:An overview. Ore Geology Reviews,31(1 -4):139 -169

Chen YJ. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen,China. Geology in China,37(4):854 -865 (in Chinese with English abstract)

Cherniak DJ and Watson EB. 2000. Pb diffusion in zircon. Chemical Geology,172(1 -2):5 -24

Chiaradia M,Merino D and Spikings R. 2009a. Rapid transition to longlived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha,Peru). Earth and Planetary Science Letters,288(3 -4):505 -515

Chiaradia M,Vallance J,F(xiàn)ontboté L,Stein H,Schaltegger U,Coder J,Richards J,Villeneuve M and Gendall I. 2009b. U-Pb,Re-Os,and40Ar/39Ar geochronology of the Nambija Au skarn and Pangui porphyry-Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes. Mineralium Deposita,44(4):371 -387

Chiaradia M,Schaltegger U,Spikings R,Wotzlaw JF and Ovtcharova M.2013. How accurately can we date the duration of magmatichydrothermal events in porphyry systems? An invited paper.Economic Geology,108(4):565 -584

Cooke DR,Hollings P and Walshe JL. 2005. Giant porphyry deposits:Characteristics, distribution, and tectonic controls. Economic Geology,100(5):801 -818

Cox DP and Singer DA. 1986. Mineral deposit models. U.S. Geological Survey Bulletin,1693:1 -379

Deckart K,Clark AH,Celso AA,Ricardo VR,Berten AN,Mortensen JK and Fanning M. 2005. Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposits,Central Chile:Implications of an integrated U-Pb and40Ar/39Ar database.Economic Geology,100(5):905 -934

Deng J,Yang LQ,Sun ZS,Peng RM,Chen XM and Du ZT. 2000. Oreforming dynamics of tectonic regime transformation and multi-layer fluid circulation. Earth Science,25(4):397 -403 (in Chinese with English abstract)

Deng J,Yang LQ,Gao BF,Sun ZS,Guo CY,Wang QF and Wang JP.2009. Fluid evolution and metallogenic dynamic during tectonic regime transition:Example from the Jiapigou gold belt in Northeast China. Resource Geology,59(2):140 -152

Deng J,Yang LQ,Ge LS,Yuan SS,Wang QF,Zhang J,Gong QJ and Wang CM. 2010. Character and post-ore changes,modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan,China. Acta Petrologica Sinica,26(6):1633 -1645 (in Chinese with English abstract)

Deng J,Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys.Acta Petrologica Sinica,27(9):2501 - 2509 (in Chinese with English abstract)

Deng J,Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica,28(5):1349 -1361 (in Chinese with English abstract)

Deng J,Ge LS and Yang LQ. 2013. Tectonic dynamic system and compound orogeny:Additionally discussing the temporal-spatial evolution of Sanjiang orogeny,Southwest China. Acta Petrologica Sinica,29(4):1099 -1114 (in Chinese with English abstract)

Deng J,Wang QF,Li GJ,Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China. Gondwana Research,26(2):419 -437

Deng J,Wang QF,Li GJ and Santosh M. 2014b. Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China. Earth-Science Reviews,doi:10. 1016/j.earscirev.2014.05.015

Deng J,Gong QJ,Wang CM,Carranza EJM and Santosh M. 2014c.Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong’ershan region,central China:An overview with new zircon U-Pb geochronology data on quartz porphyries. Journal of Asian Earth Sciences,79:161 -172

Dong YP,Zhang GW,Neubauer F,Liu XM,Genser J and Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen,China:Review and synthesis. Journal of Asian Earth Sciences,41(3):213 -237

Geyh MA and Schleicher H. 1990. Absolute Age Determination:Physical and Chemical Dating Methods and Their Application. Berlin:Springer,272 -282

Gradstein FM,Ogg JG and Smith AG. 2005. A Geologic Time Scale 2004. Cambridge:Cambridge University Press,1 -500

Han HT. 2009. Geochemical characteristics and metallogenic prediction of the Wenquan molybdenum deposit in the Western Qinling. Ph.D. Dissertation. Changsha:Central South University,1 -116 (in Chinese with English summary)

Harris AC,Kamenetsky VS,White NC and Steele DA. 2004. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit,NW Argentina. Resource Geology,54(3):341-356

Hou ZQ,Qu XM,Wang SX,Gao YF,Du AD and Huang W. 2003. The Re-Os age of molybdenites from Gangdese porphyry copper desposits belt,Xizang Plateau:Mineralization age and application of dynamic setting. Science in China (Series D),33(7):609 - 618 (in Chinese)

Huang XF,Mo XX,Yu XH,Li XW,Ding Y,Wei P and He WY.2013. Zircon U-Pb chronology,geochemistry of the Late Triassic acid volcanic rocks in Tanchang area,West Qinling and their geological significance. Acta Petrologica Sinica,29(11):3968 -3980 (in Chinese with English abstract)

Jin WJ,Zhang Q,He DF and Jia XQ. 2005. SHRIMP dating of adakites in western Qinling and their implications. Acta Petrologica Sinica,21(3):959 -966 (in Chinese with English abstract)

Lee JKW,Williams IS and Ellis DJ. 1997. Pb,U and Th diffusion in natural zircon. Nature,390 (6656):159 -162

Leech ML. 2001. Arrested orogenic development: Eclogitization delamination,and tectonic collapse. Earth and Planetary Science Letters,185(1 -2):149 -159

Li JX,Qin KZ,Li GM and Yang LK. 2007. K-Ar and40Ar/39Ar age dating of Nimu porphyry copper orefield in Central Gangdese:Constrains on magmatic-hydrothermal evolution and metallogenetic tectonic setting. Acta Petrologica Sinica,23(5):953 - 966 (in Chinese with English abstract)

Li N,Chen YJ,Pirajno F and Ni ZY. 2012. Timing of the Yuchiling giant porphyry Mo system,and implications for ore genesis.Mineralium Deposita,48(4):505 -524

Li N,Chen YJ,Santosh M and Pirajno F. 2013. Compositional polarity of Triassic granitoids in the Qinling Orogen,China:Implication for termination of the northernmost paleo-Tethys. Gondwana Research,doi:10.1016/j.gr.2013.09.017

Li XZ,Yan J and Lu XX. 1993. Granites of Qinling-Dabie. Beijing:Geological Publishing House,1 - 215 (in Chinese with English abstract)

Li YJ. 2005. Collecting and integration of the geological information of granitoids:The application of granitoids of investigation and research in Tianshui area. Ph. D. Dissertation. Xian:Chang’an University,1 -163 (in Chinese with English summary)

Mao JW,Xie GQ,Bierlein F,Qu WJ,Du AD,Ye HS,Pirajno F,Li HM,Guo BJ,Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta,72(18):4607 -4626

Mao JW,Pirajno F and Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings:An introduction to the special issue. Ore Geology Reviews,43(1):1 -7

Markey R,Stein HJ,Hannah JL,Selby D and Creaser RA. 2007.Standardizing Re-Os geochronology:A new molybdenite Reference Material (Henderson,USA)and the stoichiometry of Os salts.Chemical Geology,244(1 -2):74 -87

McDougall I and Harrison TM. 1999. Geochronology and Thermochronology by the40Ar/39Ar Method. New York:Oxford University Press,1 -269

McInnes BIA,Evans NJ,F(xiàn)u FQ and Garwin S. 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry,58(1):467 -498

Misra KC. 2000. Understanding Mineral Deposits. Dordecht/Boston/London:Kluwer Academic Publishing,353 -413

Mutschler FE,Wright EG,Ludington S and Abbott JT. 1981. Granite molybdenite systems. Economic Geology,76(4):874 -897

Qin KZ,Li GM,Zhao JX,Li JX,Xue GQ,Yan G,Su DK,Xiao B,Chen L and Fan X. 2008. Discovery of sharing large-scale porphyry molybdenum deposit,the first single Mo deposit in Tibet and its significance. Geology in China,35(6):1101 -1112 (in Chinese with English abstract)

Qiu KF and Yang LQ. 2011. Genetic feature of monazite and its U-Th-Pb dating:Critical considerations on the tectonic evolution of Sanjiang Tethys. Acta Petrologica Sinica,27(9):2721 -2732 (in Chinese with English abstract)

Qu WJ and Du AD. 2003. Highly precise Re-Os dating of molybdenite by ICP-MS with carius tube sample digestion. Rock and Mineral Analysis,22(4):254 -262 (in Chinese with English abstract)

Ren XH. 2009. Geological characteristics and genesis of molybdenum deposits in Wushan County of Gansu. Gansu Metallurgy,31(6):58-61 (in Chinese with English abstract)

Schoene B,Crowley JL,Condon DJ,Schmitz MD and Bowring SA.2006. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochimica et Cosmochimica Acta,70(2):426 -445

Seedorff E,Dilles JH,Proffen JM,Einaudi MT,Zurcher L,Stavast WJA,Johnson DA and Barton MD. 2005. Porpgyry deposits:Characteristics and origin of hypogene features. Ecomonic Geology,100thAnniversary Volume,251 -298

Selby D and Creaser RA. 2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit,British Columbia,Canada. Economic Geology,96(1):197 -204

Sillitoe RH. 1980. Types of porphyry molybdenum deposits. Mining Magazine,142:550 -553

Sillitoe RH. 2010. Porphyry Copper systems. Economic Geology,105(1):3 -41

Stein HJ,Sundblad K,Markey RJ,Morgan JW and Motuza G. 1998.Re-Os ages for Archean molybdenite and pyrite,Kuittila-Kivisuo,F(xiàn)inland and Proterozoic molybdenite,Kabeliai,Lithuania:Testing the chronometer in a metamorphic and metasomatic setting.Mineralium Deposita,33(4):329 -345

Stein HJ,Markey RJ,Morgan JW,Hannah JL and Scherstén A. 2001.The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova,13(6):479 -486

Stein HJ,Scherstén A,Hannah JW and Markey RJ. 2003. Subgrainscale decoupling of Re and187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta,67(19):3673 -3686

Sun Y,Liu JM and Zeng QD. 2012. An approach to the metallogenic mechanism of porphyry copper (molybdenium) deposits and porphyry molybdenium (copper)deposits:Influence of evolving processes of ore-forming fluids and tectonic settings. Earth Science Frontiers,19(6):179 -193 (in Chinese with English abstract)Suzuki K, Shimizu H and Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan:Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta,60(16):3151 -3159

Sylverler PJ. 1998. Post-collisional Strongly Peraluminous granites.Lithos,45(1 -4):29 -44

Valencia VA,Ruiz J,Barra F,Geherls G,Ducea M,Titley SR and Ochoa-Landin L. 2005. U-Pb zircon and Re-Os molybdenite geochronology from La Caridad porphyry copper deposit:Insights for the duration of magmatism and mineralization in the Nacozari District,Sonora,Mexico. Mineralium Deposita,40(2):175 -191

Vanderhaeghe O and Teyssier C. 2001. Partial melting and flow of orogens. Tectonopgysics,342(3 -4):451 -472

Von Quadt A,Erni M,Martinek K,Moll M,Peytcheva I and Heinrich CA. 2011. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology,39(8):731 -734

Wang CM,Deng J,Carranza EJM and Santosh M. 2013. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature,deposit types,and tectonic setting.Gondwana Research,doi:10.1016/j.gr.2013.05.005

Wang CM,Deng J,Carranza EJM and Lai XR. 2014a. Nature,diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geology Reviews,56:327 -351

Wang CM,Zhang D,Wu GG,Santosh M,Zhang J,Xu YG and Zhang YY. 2014b. Geological and isotopic evidence for magmatichydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng district,east-central China. Mineralium Deposita,doi:10. 1007/s00126-014-0521-8

Wang F. 2011. The geological and geochemical characteristics of the Wenquan molybdenum deposit in the West Qinling, and its metallogenetic geodynamic setting. Master Degree Thesis. Xi’an:Northwest University,1 -96 (in Chinese with English summary)

Wang F,Shi WB and Zhu RX. 2014. Problems of modern40Ar/39Ar geochronology:Reviews. Acta Petrologica Sinica,30(2):326 -340 (in Chinese with English abstract)

Wang QF,Deng J,Zhang QZ,Liu H,Liu XF,Wan L,Li N,Wang YR,Jiang CZ,and Feng YW. 2011. Orebody vertical structure and implications for ore-forming processes in the Xinxu bauxite deposit,western Guangxi,China. Ore Geology Reviews,39(4):230 -244

Wang T, Wang XX and Li WP. 2000. Evaluation of multiple emplacement mechanisms of Huichizi granite pluton, Qinling orogenic belt,central China. Journal of Structure Geology,22(4):505 -518

Wang XX,Wang T and Zhang CL. 2013. Neoproterozoic,Paleozoic,and Mesozoic granitoid magmatism in the Qinling Orogen,China:Constraints on orogenic process. Journal of Asian Earth Sciences,72:129 -151

Westra G and Keith SB. 1981. Classification and genesis of stockwork molybdenum deposits. Economic Geology,76(4):844 -873

Whitney DL and Evans BW. 2010. Abbreviations for names of rockforming minerals. American Mineralogist,95(1):185 -187

Yang LQ,Deng J,Ge LS,Wang QF,Zhang J,Gao BF,Jiang SQ and Xu H. 2007. Metallogenic epoch and genesis of the gold deposits in Jiaodong Peninsula,eastern China:A regional review. Progress in Natural Science,17(2):138 -143

Yang LQ,Deng J,Zhang J,Guo CY,Gao BF,Gong QJ,Wang QF,Jiang SQ and Yu HJ. 2008. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit,Jiaodong gold province,China:Implications for metallogeny and exploration. Journal of China University of Geosciences,19(4):378 -390

Yang LQ,Deng J,Guo CY,Zhang J,Jiang SQ,Gao BF,Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China.Resource Geology,59(2):181 -193

Yang LQ,Liu JT,Zhang C,Wang QF,Ge LS,Wang ZL,Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis:An example from the orogenic gold deposits in Ailaoshan gold belt,Southwest China. Acta Petrologica Sinica,26(6):1723 -1739 (in Chinese with English abstract)Yang LQ,Deng J,Zhao K and Liu JT. 2011. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt,Southwest China:Geochronological constraints. Acta Petrologica Sinica,27(9):2519 -2532 (in Chinese with English abstract)

Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli,China. Journal of Asian Earth Sciences,78:327-344

Yang LQ,Deng J,Goldfarb RJ,Zhang J,Gao BF and Wang ZL. 2014.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China. Gondwana Research,25(4):1469 -1483

Yang LQ,Deng J and Wang ZL. 2014a. Ore-controlling structural pattern of Jiaodong gold deposits: Geological-geophysical integration constraints. In:Chen YT,Jin ZM,Shi YL,Yang WC and Zhu RX(eds.). The Deep-Seated Structures of Earth in China. Beijing:Sciences Press,1006 -1030 (in Chinese)

Yang LQ,Deng J,Wang ZL,Zhang L,Guo LN,Song MC and Zheng XL. 2014b. Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,30(9):2447 -2467 (in Chinese with English abstract)

Zeng QD,Liu JM,Chu SX,Wang YB,Sun Y,Duan XX,and Zhou LL. 2012. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt,Northeast China:Characteristics and tectonic setting.International Geology Review,54(16):1843 -1869

Zhai YS. 2014. A preliminary discussion on fundamental model of metallogenic mechanism. Earth Science Frontiers,21(1):1 -8 (in Chinese with English abstract)

Zhang GW,Zhang BR,Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing:Science Press,1 -729 (in Chinese with English abstract)

Zhang HF,Jin LL,Zhang L,Harris N,Zhou L,Hu SH and Zhang BR.2005. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt:Constraints on basement nature and tectonic affinity. Science in China (Series D),50(2):184 -196

Zhu LM,Ding ZJ,Yao SZ,Zhang GW,Song SG,Qu WJ,Guo B and Li B. 2009. Ore-forming event and geodynamic setting of molybdenum deposit at Wenquan in Gansu Province,western Qinling. Chinese Science Bulletin,54(16):2309 -2324

Zhu LM,Zhang GW Chen YJ,Ding ZJ,Guo B,Wang F and Lee B.2011. Zircon U-Pb ages and geochemistry of the Wenquan Mobearing granitioids in West Qinling,China:Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit.Ore Geology Reviews,39(1 -2):46 -62

附中文參考文獻

陳義兵,張國偉,裴先治,魯如魁,梁文天,郭秀峰. 2010. 西秦嶺大草灘群的形成時代和構(gòu)造意義探討. 沉積學(xué)報,28(3):53-58

陳衍景. 2010. 秦嶺印支期構(gòu)造背景、巖漿活動及成礦作用. 中國地質(zhì),37(4):854 -865

鄧軍,楊立強,孫忠實,彭潤民,陳學(xué)明,杜子圖. 2000. 構(gòu)造體制轉(zhuǎn)換與流體多層循環(huán)成礦動力學(xué). 地球科學(xué),25(4):397 -403鄧軍,楊立強,葛良勝,袁士松,王慶飛,張靜,龔慶杰,王長明.2010. 滇西富堿斑巖型金成礦系統(tǒng)特征與變化保存. 巖石學(xué)報,26(6):1633 -1645

鄧軍,楊立強,王長明. 2011. 三江特提斯復(fù)合造山與成礦作用研究進展. 巖石學(xué)報,27(9):2501 -2509

鄧軍,王長明,李龔建. 2012. 三江特提斯疊加成礦作用樣式及過程. 巖石學(xué)報,28(5):1349 -1361

鄧軍,葛良勝,楊立強. 2013. 構(gòu)造動力體制與復(fù)合造山作用:兼論三江復(fù)合造山帶時空演化. 巖石學(xué)報,29(4):1099 -1114

甘肅省地質(zhì)礦產(chǎn)局. 1989. 甘肅省區(qū)域地質(zhì)志. 北京:地質(zhì)出版社,1 -692

韓海濤. 2009. 西秦嶺溫泉鉬礦床地質(zhì)化學(xué)特征及成礦預(yù)測. 博士學(xué)位論文. 長沙:中南大學(xué),1 -116

侯增謙,曲曉明,王淑賢,高永豐,杜安道,黃衛(wèi). 2003. 西藏高原岡底斯斑巖銅礦帶輝鉬礦Re-Os 年齡:成礦作用時限與動力學(xué)背景應(yīng)用. 中國科學(xué)(D 輯),33(7):609 -618

黃雄飛,莫宣學(xué),喻學(xué)惠,李小偉,丁一,韋萍,和文言. 2013. 西秦嶺宕昌地區(qū)晚三疊世酸性火山巖的鋯石U-Pb 年代學(xué)、地球化學(xué)及其地質(zhì)意義. 巖石學(xué)報,29(11):3968 -3980

金維浚,張旗,何登發(fā),賈秀琴. 2005. 西秦嶺埃達克巖的SHRIMP定年及其構(gòu)造意義. 巖石學(xué)報,21(3):959 -966

李金祥,秦克章,李光明,楊列坤. 2007. 岡底斯中段尼木斑巖銅礦田的K-Ar、40Ar/39Ar 年齡:對巖漿-熱液系統(tǒng)演化和成礦構(gòu)造背景的制約. 巖石學(xué)報,23(5):953 -966

李先梓,嚴振,盧欣祥. 1993. 秦嶺-大別山花崗巖. 北京:地質(zhì)出版社,1 -215

李永軍. 2005. 花崗巖類地質(zhì)信息的采集與集成——在天水地區(qū)花崗巖類調(diào)查與研究中的應(yīng)用. 博士學(xué)位論文. 西安:長安大學(xué),1 -163

秦克章,李光明,趙俊興,李金祥,薛國強,嚴剛,粟登奎,肖波,陳雷,范新. 2008. 西藏首例獨立鉬礦:岡底斯沙讓大型斑巖鉬礦的發(fā)現(xiàn)及其意義. 中國地質(zhì),35(6):1101 -1112

邱昆峰,楊立強. 2011. 獨居石成因特征與U-Th-Pb 定年及三江特提斯構(gòu)造演化研究例析. 巖石學(xué)報,27(9):2721 -2732

屈文俊,杜安道. 2003. 高溫密閉溶樣電感耦合等離子體質(zhì)譜準確測定輝鉬礦錸-鋨地質(zhì)年齡. 巖礦測試,22(4):254 -262

任新紅. 2009. 甘肅武山溫泉鉬礦床地質(zhì)特征及成因. 甘肅冶金,31(6):58 -61

孫燕,劉建明,曾慶棟. 2012. 斑巖型銅(鉬)礦床和斑巖型鉬(銅)礦床形成機制探討:流體演化及構(gòu)造背景的影響. 地學(xué)前緣,2012,19(6):179 -193

王非,師文貝,朱日祥. 2014.40Ar/39Ar 年代學(xué)中幾個重要問題的討論. 巖石學(xué)報,30(2):326 -340

王飛. 2011. 西秦嶺溫泉鉬礦床地質(zhì)-地球化學(xué)特征與成礦動力學(xué)背景. 碩士學(xué)位論文. 西安:西北大學(xué),1 -96

楊立強,劉江濤,張闖,王慶飛,葛良勝,王中亮,張靜,龔慶杰.2010. 哀牢山造山型金成礦系統(tǒng):復(fù)合造山構(gòu)造演化與成礦作用初探. 巖石學(xué)報,26(6):1723 -1739

楊立強,鄧軍,趙凱,劉江濤. 2011. 哀牢山造山帶金礦成礦時序及其動力學(xué)背景探討. 巖石學(xué)報,27(9):2519 -2132

楊立強,鄧軍,王中亮. 2014a. 膠東金礦控礦構(gòu)造樣式:地質(zhì)-地球物理綜合約束. 見:陳運泰,金振民,石耀霖,楊文采,朱日祥主編. 中國大陸地球深部結(jié)構(gòu)與動力學(xué)研究——慶賀滕吉文院士從事地球物理研究60 周年. 北京:科學(xué)出版社,1006 -1030

楊立強,鄧軍,王中亮,張良,郭林楠,宋明春,鄭小禮. 2014b. 膠東中生代金成礦系統(tǒng). 巖石學(xué)報,30(9):2447 -2467

翟裕生. 2014. 試論礦床成因的基本模型. 地學(xué)前緣,21(1):1 -8

張國偉,張本仁,袁學(xué)誠,肖慶輝. 2001. 秦嶺造山帶與大陸動力學(xué). 北京:科學(xué)出版社,1 -729

張宏飛,靳蘭蘭,張利,Nigel Harris,周煉,胡圣虹,張本仁. 2005.西秦嶺花崗巖類地球化學(xué)和Pb-Sr-Nd 同位素組成對基底性質(zhì)及其構(gòu)造屬性的限制. 中國科學(xué)(D 輯),35(10):914 -926

猜你喜歡
輝鉬礦造山熱液
黑龍江省造山帶研究:關(guān)于洋殼俯沖造山和陸殼碰撞造山磨拉石的認識*
安徽涇縣湛嶺斑巖型鉬礦床中錸的賦存狀態(tài)研究*
柴達木盆地北緣造山型金礦成礦條件及找礦潛力
新型高效輝鉬礦抑制劑及其作用機理研究①
礦冶工程(2020年6期)2021-01-30 07:23:26
熱處理輝鉬礦光催化原位還原銀離子的研究
硅酸鹽通報(2020年9期)2020-10-17 08:14:24
與侵入巖有關(guān)的金礦床與造山型金礦床的區(qū)別
非洲東南部造山型金礦成礦環(huán)境與資源潛力分析
塔東熱液地質(zhì)作用機制及對儲層的改造意義
層結(jié)背景下熱液柱演化的實驗?zāi)M*
海洋與湖沼(2017年6期)2017-03-31 06:18:19
熱液循環(huán)助采洗井裝置的分析與應(yīng)用
石油知識(2016年2期)2016-02-28 16:20:19
大厂| 綦江县| 周宁县| 和田市| 宁南县| 江都市| 夹江县| 海宁市| 江津市| 河东区| 南陵县| 沈丘县| 壤塘县| 民丰县| 静海县| 河西区| 京山县| 枣庄市| 桐乡市| 石楼县| 凌海市| 平顺县| 环江| 犍为县| 高青县| 专栏| 梅州市| 隆化县| 凤凰县| 潞城市| 慈利县| 隆尧县| 和平县| 平利县| 定兴县| 白城市| 缙云县| 台安县| 江山市| 响水县| 邢台县|