彭 繼,崔執(zhí)鳳,屈 軍
(安徽師范大學(xué)物理與電子信息學(xué)院,蕪湖241000)
拋物線坐標(biāo)系非傍軸矢量光束的解及聚焦特性
彭 繼,崔執(zhí)鳳,屈 軍*
(安徽師范大學(xué)物理與電子信息學(xué)院,蕪湖241000)
為了求解柱坐標(biāo)系下非傍軸矢量波動(dòng)方程,得到光束的電場(chǎng)解析表達(dá)式,基于軸對(duì)稱情況下沿角向偏振的電場(chǎng),將非傍軸近似情況下的矢量波動(dòng)方程進(jìn)行了拋物線坐標(biāo)的轉(zhuǎn)化,利用分離變量法進(jìn)行了相應(yīng)求解,并給出了相應(yīng)的數(shù)值計(jì)算。結(jié)果表明,非傍軸近似情況下,矢量波動(dòng)方程的解能描述一種光束的電場(chǎng),該場(chǎng)的解析表達(dá)式與合流超幾何函數(shù)以及梅杰函數(shù)的解有關(guān);光束的光強(qiáng)分布與第1類零階貝塞爾模式光束類似;光束在近光軸處的光強(qiáng)表現(xiàn)為無(wú)限大并且沿邊緣方向急劇衰減;在焦平面上沿著徑向方向光強(qiáng)急劇減小。所得結(jié)果對(duì)于探究非傍軸近似情況下矢量光束的傳輸特性有一定的意義。
激光光學(xué);非傍軸矢量波動(dòng)方程;坐標(biāo)變換;合流超幾何函數(shù);梅杰函數(shù)
近年來(lái),激光在高分辨成像技術(shù)[1-2]、光學(xué)捕獲及光鑷技術(shù)[3-5]、光束的傳輸特性[6-13]、激光信息存儲(chǔ)技術(shù)[14-15]等方面的應(yīng)用越來(lái)越廣泛,隨之對(duì)激光光束的各項(xiàng)特性的研究也相應(yīng)展開(kāi)。為了產(chǎn)生各種適合要求的特殊光束,研究人員已經(jīng)做了大量的探究工作,并且取得不菲的成果。眾所周知,基模高斯光束、厄米-高斯模和拉蓋爾-高斯模都是最常見(jiàn)的傍軸條件下標(biāo)量赫姆霍茲方程的解[16],通過(guò)精確地求解非傍軸條件下標(biāo)量的赫姆霍茲方程,還可以得到一些其它的激光光束的電場(chǎng)解析表達(dá)式,其中包括著名的拋物型激光束[17]、平面波和球面波[18]、貝塞爾模式[19-20]以及馬蒂厄光束[21]。然而也有些激光光束是通過(guò)復(fù)雜的參量多項(xiàng)式來(lái)描述其復(fù)振幅的,例如拉蓋爾-高斯模式[22]、非傍軸拉蓋爾-高斯模式[23]、復(fù)宗量拉蓋爾-高斯光束[24]以及厄米-高斯光束[25]等。除此之外,理論上利用求解傍軸近似條件下矢量波動(dòng)方程得到矢量光束[26-28],同時(shí)在實(shí)驗(yàn)上也有諸多生成矢量光束的成功研究成果[29-32],KOTIYAR等人求解了傍軸近似情況下的標(biāo)量赫姆霍茲方程,從而得到一系列非常見(jiàn)的合流超幾何的激光光束[33-35]。
本文中探討了非傍軸近似情況下矢量波動(dòng)方程的拋物線坐標(biāo)轉(zhuǎn)化的一種特殊解,以此來(lái)描述了一種新的軸對(duì)稱情況下沿角向偏振的光束的電場(chǎng)解析表達(dá)式,并對(duì)其光強(qiáng)分布進(jìn)行了相應(yīng)的數(shù)值計(jì)算,結(jié)果對(duì)于研究不用矢量光束的傳輸和聚焦特性及應(yīng)用有一定的參考價(jià)值。
傍軸條件下標(biāo)量赫姆霍茲方程的解可以用來(lái)描述線偏振光場(chǎng)或者矢量光場(chǎng)的某一個(gè)分量的電場(chǎng)。在柱坐標(biāo)系下,沿z軸傳輸?shù)墓馐碾妶?chǎng)解析表達(dá)式可以寫成:
基模高斯光束與方位角φ無(wú)關(guān),可以用下式表示:
對(duì)于矢量光束傳輸,將電場(chǎng)定義成矢量形式,光束傳輸?shù)氖噶坎▌?dòng)方程[26]為:
為了便于建立數(shù)學(xué)模型和求解,在此不選用任意方向偏振的光束電場(chǎng)作為研究對(duì)象,考慮一種特殊的情況:即在軸對(duì)稱情況下沿角向偏振的電場(chǎng)[26]:
假設(shè)exp(-iωt)是一個(gè)與時(shí)間t有關(guān)的項(xiàng)以及波數(shù)k=2π/λ,將(6)式代入(5)式,在非傍軸條件下,不忽略?2E/?z2項(xiàng),得到:
這與參考文獻(xiàn)[25]中的(5)式的第2項(xiàng)明顯不同。將(7)式中的變量r,z轉(zhuǎn)換成拋物線坐標(biāo)系,如下:
(7)式改寫為:
將(9)式進(jìn)行分離變量,假設(shè):
于是,得到下面的方程:
式中,C是一個(gè)與u和v都無(wú)關(guān)的常量。此時(shí),(11)式可以進(jìn)一步簡(jiǎn)化為:
在這里設(shè)變量ξ=-iku,η=ikv,C=-ikD(D為常量),代入(12)式中得:
所以(13)式的解如下:
式中,G({{a1,…,an},{an+1,…,ap}},{{b1,…,bm},{bm+1,…,bq}},z)是梅杰函數(shù),1F1(a,b,z)為合流超幾何函數(shù)。當(dāng)且僅當(dāng)D滿足D=(其中n=0,1,2,3…)時(shí),梅杰函數(shù)和合流超幾何函數(shù)同時(shí)有解。這里,選取n=0這一特殊的解,通過(guò)貝塞爾函數(shù)與合流超幾何函數(shù)之間的變化關(guān)系[36]以及解梅杰函數(shù),得到:
式中,Γ(·)表示的是伽瑪函數(shù),Jv(·)表示v階的第1類貝塞爾函數(shù)。因此,最初的矢量波動(dòng)方程(5)式的解為:
式中,A0是與光束功率有關(guān)的常數(shù)。注意到(17)式中有光束的傳輸因子exp(ikz),它描述了光束的傳輸方向。將半整數(shù)階的貝塞爾函數(shù)化簡(jiǎn)為初等函數(shù),則復(fù)振幅可以表示為:
解析表達(dá)式(18)式中含有1/r項(xiàng)存在,故光束存在一個(gè)奇點(diǎn),即在近軸處的光強(qiáng)可以表現(xiàn)為無(wú)限大。同時(shí),隨著r值的增大,其強(qiáng)度也會(huì)急劇地衰減。
根據(jù)光束的傳輸理論,當(dāng)光束傳輸距離z=f時(shí),光束傳輸?shù)浇蛊矫嫣?。故在?8)式中作變量代換令z→f-z(f是焦距),得:
在源平面z=0處復(fù)振幅可以表示為:
在軸線r=0上不能實(shí)現(xiàn)聚焦。因?yàn)楫?dāng)z>f時(shí),近軸(r?f-z)點(diǎn)的復(fù)振幅可以近似地表示為:
當(dāng)r=0時(shí),無(wú)論z取何值,(21)式所描述的光束強(qiáng)度都是無(wú)限大的;然而對(duì)于其它非零r值,隨著z的增大光強(qiáng)在減弱。因此,在焦點(diǎn)z=f后沿著光軸的方向模擬光強(qiáng)是逐漸減小的。
根據(jù)前面的解析表達(dá)式(17)式和(19)式,選取參量進(jìn)行相應(yīng)的數(shù)值模擬。圖1a表示在O-r-z平面歸一化的光束強(qiáng)度分布,圖1b和圖1c分別表示光束沿z傳輸方向和徑向r的強(qiáng)度分布情況。由于r=0點(diǎn)處存在光學(xué)奇點(diǎn),所以這里取值考慮r→0即可,波長(zhǎng)λ=632.8nm,A0=100。由圖1可以看出,其光強(qiáng)在r=0處為無(wú)限大,沿z方向有明顯的振蕩衰減,然而沿徑向r方向,衰減得更加厲害。
圖2a、圖2b、圖2c分別給出了光束在橫截面z=2λ,z=4λ和z=6λ處的強(qiáng)度分布,圖2d、圖2e、圖2f中分別給出了光束在橫截面z=2λ,z=4λ和z=6λ處光強(qiáng)沿徑向r的強(qiáng)度分布,其數(shù)值計(jì)算參量與圖1相同。圖2表明,該光束的強(qiáng)度分布為強(qiáng)弱相間的同心圓環(huán),這類似于第1類零階貝塞爾光束[19-20]的強(qiáng)度分布。并且隨著傳輸距離的增加中心的亮斑尺寸在增大,而強(qiáng)度卻沿徑向方向在逐漸地衰減。
圖3a中給出了焦平面z=f處光強(qiáng)的3維圖分布情況。圖3b、圖3c、圖3d分別表示在橫截面z= 2λ,z=4λ和z=6λ光強(qiáng)的3維圖形分布情況。其計(jì)算參量與圖1相同。與圖3b、圖3c、圖3d相比,圖3a在焦平面處的光強(qiáng)較大,且中心亮斑的尺寸較小。在橫截面z=2λ,z=4λ和z=6λ上,r=0處的光強(qiáng)是無(wú)限大的,而沿著邊緣方向卻是急劇衰減的(如圖3b、圖3c和圖3d所示)。
理論推導(dǎo)了非傍軸條件下的矢量波動(dòng)方程在拋物線坐標(biāo)系下準(zhǔn)確的解,該解能描述一種特殊的矢量光束。數(shù)值計(jì)算的結(jié)果表明,該光束在近光軸處的光強(qiáng)表現(xiàn)為無(wú)限大,沿邊緣衰減非常明顯,整個(gè)光束的強(qiáng)度分布類似于第1類零階貝塞爾光束,最后對(duì)該光束的聚焦特性進(jìn)行了相應(yīng)的數(shù)值計(jì)算和討論。
[1] HAYAZAWA N,SAITO Y,KAWATA S.Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy[J].Applied Physics Letters,2004,85(25):6239-6241.
[2] ZHANG Zh H,LI Ch G,LI J Zh,et al.Phase compensation in lensless Fourier transform digital holography[J].Laser Technology,2013,37(5):569-600(in Chinese).
[3] ZHAN Q W.Trapping metallic Rayleigh particles with radial polarization[J].Optics Express,2004,12(15):3377-3382.
[4] MASAKI M,TERUTAKE H,YASUHIRO T.Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam[J].Applied Optics,2009,48(32):6143-6151.
[5] SILER M,JAKL P,BRZOBOHATY O,et al.Optical forces induced behavior of a particle in a non-diffracting vortex beam[J].Optics Express,2012,20(22):24304-24319.
[6] ZHOU P,MA Y X,WANG X L,et al.Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere[J].Applied Optics,2009,48(28):5251-5258.
[7] GE X L,F(xiàn)ENG X X,F(xiàn)AN Ch Y.Progress of the study of phase discontinuity of laser propagation through atmosphere[J].Laser Technology,2012,36(4):485-489(in Chinese).
[8] ZHOU P,LIU Z J,XU X J,et al.Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere[J].Optics and Lasers in Engineering,2009,47(11):1254-1258.
[9] ZHU Zh W,SU Zh P.Spectral change of J0-correlated partially coherent flat-topped beam in turbulent atmosphere[J].Laser Technology,2012,36(4):532-535(in Chinese).
[10] XU H F,CUI Zh F,QU J.Propagation of elegant Laguerre-Gaussian beam in non-Kolmogorov turbulence[J].Optics Express,2011,19(22):21163-21173.
[11] WANG L,SHEN X J,ZHANG W A,et al.Analysis of spectral propagating properties of Gaussian beam[J].Laser Technology,2012,36(5):700-703(in Chinese).
[12] XU H F,LUO H,CUI Zh F,et al.Polarization characteristics of partially coherent elegant Laguerre-Gaussian beams in non-Kolmogorov turbulence[J].Optics and Lasers in Engineering,2012,50(5):760-766.
[13] WANG B,F(xiàn)EI J Ch,CUI Zh F,et al.Reserch of degree of polarization of PCELG beam propagating through a circular aperture[J].Laser Technology,2013,37(5):672-678(in Chinese).
[14] BARREIRO J T,WEI T Ch,KWIAT P G.Remote preparation of single-photon“Hybrid”entangled and vector-polarization states[J].Physical Review Letters,2010,105(3):030407.
[15] LI X P,CAO Y Y,GU M.Superresolution-focal-volume induced 3.0Tbytes/disk capacity by focusing a radially polarized beam[J].Optics Letters,2011,36(13):2510-2512.
[16] ZHAN Q W.Cylindrical vector beams:from mathematical concepts to applications[J].Advances in Optics and Photonics,2009,1(1):1-57.
[17] MIGUEL A B,JULIO C G V,SABINO Ch C.Parabolic nondiffracting optical wave fields[J].Optics Letters,2004,29(1):44-46.
[18] BORN M,WOLF E.Principles of optics[M].7th ed.Cam-bridgeshire,United Kingdom:Cambridge University Press,1999:11-19.
[19] DURNIN J,MICELI J J,EBERLY J H.Diffraction-free beams[J].Physical Review Letters,1987,58(15):1499-1501.
[20] KHONINA S N,KOTLYAR V V,SKIDANOV R V,et al.Rotation of microparticles with Bessel beams generated by diffractive elements[J].Journal of Modern Optics,2004,51(14):2167-2184.
[21] GUTIERREZ-VEGA J C,ITURBE-CASTILLO M D,CHAVEZCERDA S.Alternative formulation for invariant optical fields:Mathieu beams[J].Optics Letters,2000,25(20):1493-1495.[22] KOGELNIK H,LI T.Laser beams and resonators[J].Proceedings of the IEEE,1966,54(10):1312-1329.
[23] DUAN K L,Lü B D.Application of the Wigner distribution function to complex-argument Hermite-and Laguerre-Gaussian beams beyond the paraxial approximation[J].Optics&Laser Technology,2007,39(1):110-115.
[24] SESHADRI S R.Self-interaction and mutual interaction of complex-argument Laguerre-Gauss beams[J].Optics Letters,2006,31(5):619-621.
[25] KOSTENBAUDER A,SUN Y,SIEGMAN A E.Eigenmode expansions using biorthogonal functions:complex-valued Hermite-Gaussians:reply to comment[J].Journal of the Optical Society of America,2006,A23(6):1528-1529.
[26] HALL D G.Vector-beam solutions of Maxwell's wave equation[J].Optics Letters,1996,21(1):9-11.
[27] XIN J T,GAO Ch Q,LI Ch.Combination of Hermit-Gaussian beams to arbitery order vector beams[J].Scientia Sinica Physica Mechanica&Astronomica,2012,42(10):1017-1021(in Chinese).
[28] LIM B C,PHUA P B,LAI W J,et al.Fast switchable electrooptic radial polarization retarder[J].Optics Letters,2008,33(9):950-952.
[29] TIDWELL S C,DENNIS H F,WAYNE D K.Generating radially polarized beams interferometrically[J].Applied Optics,1990,29(15):2234-2239.
[30] MAURER C,JESACHER A,F(xiàn)URHAPTER S,et al.Tailoring of arbitrary optical vector beams[J].New Journal of Physics,2007,9(3):78.
[31] WANG X L,DING J P,NI W J,et al.Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J].Optics Letters,2007,32(24):3549-3551.
[32] KOTLYAR V V,SKIDANOV R V,KHONINA S N,et al.Hypergeometric modes[J].Optics Letters,2007,32(7):742-744.
[33] KARIMI E,ZITO G,PICCIRILLO B,et al.Hypergeometric-Gaussian modes[J].Optics Letters,2007,32(21):3053-3055.
[34] KOTIYAR V V,KOVALEV A A,SOIFER V A.Hankel-Bessel laser beams[J].Journal of the Optical Society of America,2012,A29(5):741-747.
[35] ABRAMOWITZ M,STEGUN I.Handbook of mathematical functions[M].9th ed.New York,USA:Dover Publishing Inc,1970:504-510.
Solution and focus property of the nonparaxial vector beams in the parabolic coordinates
PENG Ji,CUI Zhifeng,QU Jun
(College of Physics and Electronic Information,Anhui Normal University,Wuhu 241000,China)
In order to solve the nonparaxial vector wave equation in the cylindrical coordinates and obtain electric field expression of the beams,based on the electric field along the azimuthal polarization under the axisymmetric circumstance,the vector wave equation under the nonparaxiality similar circumstances was transformed to the parabolic coordinates and was solved appropriately with the separation variables method.The corresponding numerical calculation was made.The results show that the new analytical solution of the nonparaxial vector wave equation is discussed to describe the propagation of a laser beam.The electric field of such a beam is found to be based on the solutions of the confluent hypergeometric function and the Meijer functions.The intensity distribution of beam is similar to the first-class zero-order Bessel beam mode.The intensity of the light beam near the optical axis is nearly infinite,and decays rapidly along the peripheral direction and decreases sharply along the radial direction in the focal plane.The acquired results are of certain significance for exploring the propagation properties of vector beams in case of nonparaxial approximation.
laser optics;nonparaxial vector wave equation;coordinate transformation;confluent hypergeometric function;Meijer function
O432
A
10.7510/jgjs.issn.1001-3806.2014.05.027
1001-3806(2014)05-0703-06
國(guó)家自然科學(xué)基金資助項(xiàng)目(11374015)
彭 繼(1987-),男,碩士研究生,主要從事激光大氣傳輸與光束質(zhì)量的研究。
*通訊聯(lián)系人。E-mail:qujun70@mail.ahnu.edu.cn
2013-10-11;
2013-11-13