吳和保,柯超,竺東杰,胡漢華,余經(jīng)炭
(1.武漢工程大學(xué)機(jī)電工程學(xué)院,湖北武漢430205;2.武漢紐威制藥機(jī)械有限公司,湖北武漢430065)
實(shí)時(shí)溫度測(cè)控系統(tǒng)在材料濃縮提取技術(shù)上的應(yīng)用
吳和保1,柯超1,竺東杰1,胡漢華2,余經(jīng)炭2
(1.武漢工程大學(xué)機(jī)電工程學(xué)院,湖北武漢430205;2.武漢紐威制藥機(jī)械有限公司,湖北武漢430065)
機(jī)械式蒸汽再壓縮濃縮技術(shù)(MVR)利用濃縮過(guò)程中二次蒸汽的機(jī)械式加熱加壓,實(shí)現(xiàn)了熱能的充分利用,具有蒸汽用量少、能耗低的優(yōu)勢(shì)而被廣泛應(yīng)用于制藥、食品和污水處理領(lǐng)域,其關(guān)鍵技術(shù)之一是對(duì)二次蒸汽壓縮過(guò)程中的溫度的實(shí)時(shí)控制.在對(duì)MVR系統(tǒng)進(jìn)行系統(tǒng)研究的基礎(chǔ)上,采用西門(mén)子S7-200PLC控制器對(duì)二次蒸汽壓縮前后的溫度實(shí)施在線(xiàn)監(jiān)測(cè)和數(shù)據(jù)的優(yōu)化處理,在設(shè)計(jì)的計(jì)算機(jī)軟件驅(qū)動(dòng)下,運(yùn)用比例積分微分控制法對(duì)采集到的二次蒸汽實(shí)時(shí)溫度值進(jìn)行判斷,實(shí)時(shí)溫度低于設(shè)定溫度值時(shí),控制器發(fā)出指令提高壓縮機(jī)轉(zhuǎn)速增加壓縮機(jī)對(duì)二次蒸汽的升溫值,并通過(guò)上位機(jī)監(jiān)視與控制通用系統(tǒng)軟件與可編程邏輯控制器進(jìn)行連接通訊,從而實(shí)現(xiàn)系統(tǒng)參數(shù)的設(shè)置和二次蒸汽溫度的實(shí)時(shí)監(jiān)控.研究結(jié)果表明,該系統(tǒng)能實(shí)現(xiàn)二次蒸汽溫度的實(shí)時(shí)在線(xiàn)監(jiān)測(cè)和快速調(diào)節(jié),并繪制實(shí)時(shí)溫度曲線(xiàn)和溫度數(shù)值的顯示,降低了人工勞動(dòng)力,確保MVR系統(tǒng)的自動(dòng)化運(yùn)行.
可編程邏輯控制器;監(jiān)視與控制通用系統(tǒng);比例積分微分控制;監(jiān)視與控制通用系統(tǒng)組態(tài)
機(jī)械蒸汽再壓縮蒸發(fā)(mechanical vapor re?compression技術(shù),簡(jiǎn)稱(chēng)MVR),是一種可以重新利用自身產(chǎn)生的二次蒸汽能量并能節(jié)省人工勞動(dòng)力的蒸發(fā)工藝,如今已經(jīng)在各個(gè)行業(yè)得到廣泛運(yùn)用.其工作原理是將蒸發(fā)器蒸發(fā)產(chǎn)生的原本需要冷卻水冷凝并排放掉的二次蒸汽,經(jīng)蒸汽壓縮機(jī)壓縮升溫后,再送入蒸發(fā)器換熱室作為加熱熱源,替代生蒸汽循環(huán)利用[1].由于重新利用自身產(chǎn)生的二次蒸汽能量,減少了對(duì)外界能量的需求,很好的起到了節(jié)能節(jié)水的效果.但對(duì)二次蒸汽溫度的控制精度低,人機(jī)交互困難,難以實(shí)現(xiàn)MVR系統(tǒng)的自動(dòng)化運(yùn)行.
MVR溫度監(jiān)控系統(tǒng)主要由采集溫度裝置和控制溫度裝置兩部分組成,其中采集裝置主要有Pt100熱電阻和EM 235模擬量處理模塊;溫度控制裝置有羅茨風(fēng)機(jī)、變頻器、西門(mén)子S7-200 PLC和MCGS組態(tài)軟件等.這兩部分構(gòu)建了一個(gè)基于MC?GS組態(tài)軟件的PLC溫度監(jiān)控系統(tǒng).本系統(tǒng)可以實(shí)現(xiàn)對(duì)二次蒸汽溫度的定值控制,并可對(duì)系統(tǒng)運(yùn)行狀態(tài)做到實(shí)時(shí)監(jiān)控及實(shí)時(shí)反饋,使操作人員快速準(zhǔn)確地了解系統(tǒng)實(shí)時(shí)的運(yùn)轉(zhuǎn)狀況.
由于MVR系統(tǒng)對(duì)料液的蒸發(fā)溫度要求高,所以在此系統(tǒng)中采用西門(mén)子PLC S7-200作為控制器對(duì)換熱室中的二次蒸汽進(jìn)行溫度控制,主要是通過(guò)羅茨風(fēng)機(jī)壓縮二次蒸汽來(lái)提高蒸汽的溫度,而羅茨風(fēng)機(jī)主要是由變頻器來(lái)控制轉(zhuǎn)速.首先根據(jù)溫度控制方案進(jìn)行軟件編程,然后通過(guò)控制變頻器可調(diào)節(jié)羅茨風(fēng)機(jī)轉(zhuǎn)速進(jìn)而改變二次蒸汽溫度,并將采集到的溫度通過(guò)數(shù)據(jù)電纜傳輸實(shí)時(shí)的顯示到控制面板中.在MVR溫度監(jiān)控系統(tǒng)中,硬件方面關(guān)鍵部分是控制元件的選擇,本系統(tǒng)選取西門(mén)子PLC S7-200 CPU224XP控制器作為控制元件,并還需1個(gè)EM235模塊用作模擬量輸入輸出[2];軟件方面選取SETP7-Micro/W IN編程軟件以及MCGS組態(tài)軟件制作控制面板界面.由于在系統(tǒng)中采集的二次蒸汽溫度是模擬量參數(shù),所以系統(tǒng)還選用EM 235擴(kuò)展模塊,EM235模塊可將模擬信號(hào)轉(zhuǎn)換成數(shù)字信號(hào),模擬量參數(shù)輸入到該模塊進(jìn)行模數(shù)轉(zhuǎn)換并送入控制器,可實(shí)現(xiàn)對(duì)二次蒸汽溫度的采集.MVR控溫系統(tǒng)設(shè)計(jì)中還選用了西門(mén)子MM440變頻器,在本次控制系統(tǒng)中主要是控制調(diào)節(jié)變頻器來(lái)改變羅茨風(fēng)機(jī)的轉(zhuǎn)速,從而調(diào)節(jié)二次蒸汽溫度的大小.控制系統(tǒng)結(jié)構(gòu)圖如圖1所示.
圖1 控制系統(tǒng)結(jié)構(gòu)圖Fig.1 Control system structure
在本次MVR二次蒸汽溫度監(jiān)控系統(tǒng)中主要采用PID閉環(huán)反饋調(diào)節(jié)控制系統(tǒng)[3],如圖2所示,PID閉環(huán)反饋調(diào)節(jié)控制系統(tǒng)能夠?qū)Χ握羝麥囟冗M(jìn)行精確調(diào)節(jié)和控制.
圖2 基于MCGS的PLC溫度閉環(huán)控制系統(tǒng)結(jié)構(gòu)圖Fig.2 Based on MCGSPLC closed loop temperature control system structure
在MVR系統(tǒng)中,主要是在負(fù)壓下加熱二次蒸汽,而二次蒸汽的溫度低于100℃,所以采集蒸汽溫度選取Pt100熱電阻就可滿(mǎn)足.首先將Ptl00鉑熱電阻傳感器檢測(cè)到的二次蒸汽溫度信號(hào)進(jìn)行標(biāo)度轉(zhuǎn)換并轉(zhuǎn)換成標(biāo)準(zhǔn)電壓信號(hào)送至EM235模擬量處理模塊[4],然后由EM 235模塊處理后轉(zhuǎn)換成標(biāo)準(zhǔn)數(shù)字信號(hào)存放到PLC的寄存器中.為了讀取寄存器里的溫度值[5],在PLC程序中編寫(xiě)了子程序讀取采集到的溫度值,并將其按編寫(xiě)好的標(biāo)度轉(zhuǎn)換程序轉(zhuǎn)換成0~1之間的實(shí)數(shù),之后在中斷服務(wù)程序中將轉(zhuǎn)換之后的實(shí)數(shù)送至PID控制模塊進(jìn)行偏差運(yùn)算,然后將運(yùn)算結(jié)果轉(zhuǎn)換成PLC能夠識(shí)別的標(biāo)準(zhǔn)數(shù)字輸出信號(hào)[6],并送入EM235模塊轉(zhuǎn)換成0~10V的標(biāo)準(zhǔn)電壓輸出信號(hào),通過(guò)控制變頻器調(diào)節(jié)羅茨風(fēng)機(jī)的轉(zhuǎn)速進(jìn)而改變二次蒸汽溫度,直至與設(shè)定值接近或相同.并通過(guò)MCGS組態(tài)平臺(tái)來(lái)實(shí)時(shí)地監(jiān)控MVR系統(tǒng)中二次蒸汽溫度的變化,可以更加直接、方便的觀(guān)察二次蒸汽溫度的變化情況.
MVR溫度監(jiān)控系統(tǒng)中的PLC控制程序主要由主程序、子程序和中斷服務(wù)程序三個(gè)部分組成. PLC首先運(yùn)行主程序并完成繼電器觸點(diǎn)的初始化設(shè)置、手自動(dòng)檔切換控制以及PID參數(shù)的初始化;中間跳入子程序并完成二次蒸汽溫度的數(shù)據(jù)采集、標(biāo)度變換,最后跳入中斷服務(wù)程序完成PID加熱室控制以及跟蹤及輸出等功能.內(nèi)部采用PID運(yùn)算也就是比例、積分、微分等運(yùn)算控制對(duì)二次蒸汽溫度值進(jìn)行運(yùn)算比較.系統(tǒng)偏差由目標(biāo)值r(t)與反饋值c(t)通過(guò)數(shù)值計(jì)算得出[7]:
系統(tǒng)偏差通過(guò)PID反饋調(diào)節(jié)進(jìn)行調(diào)控,其控制規(guī)律為:
而在本文中主要是溫度設(shè)定值(目標(biāo)值)與溫度采集值(反饋值)構(gòu)成的偏差.
首先建立溫度控制主程序,對(duì)輸出點(diǎn)進(jìn)行初始化設(shè)置并啟動(dòng)子程序,如圖3所示.當(dāng)二次蒸汽溫度低于60℃時(shí),自動(dòng)開(kāi)啟壓縮機(jī)加熱,不經(jīng)過(guò)PID調(diào)節(jié);當(dāng)二次蒸汽溫度高于60℃時(shí),啟動(dòng)壓縮機(jī)加熱,并運(yùn)行PID控制進(jìn)行溫度自動(dòng)調(diào)節(jié),直到與設(shè)定溫度吻合,如圖4所示.子程序主要是對(duì)二次蒸汽溫度的采集和標(biāo)度轉(zhuǎn)換,如圖5所示.由AIW 0輸入的是6400-32000的數(shù)字量,運(yùn)算時(shí)要轉(zhuǎn)換為實(shí)際的溫度,轉(zhuǎn)換公式為:
其中,T為實(shí)際溫度,D為AIW 0輸入的數(shù)字量[8].
圖3 初始化程序Fig.3 Initializing program
圖4 溫度調(diào)節(jié)程序Fig.4 Thermoregulation program
圖5 溫度采集程序Fig.5 Temperature collection program
監(jiān)控軟件可以采用北京昆侖通態(tài)的MCGS嵌入版組態(tài)軟件進(jìn)行人機(jī)交換軟件設(shè)計(jì).打開(kāi)MC?GS組態(tài),軟件界面上有五個(gè)窗口,主要在用戶(hù)窗口中構(gòu)建MVR溫度控制系統(tǒng)所需的人機(jī)交換界面,并可對(duì)所需的各個(gè)構(gòu)件進(jìn)行組態(tài)[9].
第一步啟動(dòng)組態(tài)軟件新建一個(gè)工程,新建工程里面可以選擇觸摸屏的型號(hào)以及背景的顏色和大?。贿M(jìn)入工作臺(tái)出現(xiàn)5個(gè)窗口,其中主控窗口可以放置多個(gè)用戶(hù)窗口,并可根據(jù)用戶(hù)策略對(duì)這些用戶(hù)窗口進(jìn)行管理和調(diào)度;然后在設(shè)備窗口中對(duì)西門(mén)子PLC與組態(tài)軟件進(jìn)行連接和設(shè)置,首先點(diǎn)擊打開(kāi)設(shè)備窗口,選擇通用串口父設(shè)備,然后選擇西門(mén)子S7200PPI,完成與外部設(shè)備的連接[10];用戶(hù)窗口主要是在工程中設(shè)置監(jiān)控系統(tǒng)需要的人機(jī)交換界面,點(diǎn)擊用戶(hù)窗口,選擇新建窗口,彈出動(dòng)畫(huà)組態(tài)窗口,在窗口里可以建立動(dòng)畫(huà)顯示界面、顯示燈開(kāi)關(guān)、溫度輸入輸出框以及實(shí)時(shí)溫度曲線(xiàn)等.組態(tài)完人機(jī)界面之后還需對(duì)各個(gè)構(gòu)件進(jìn)行屬性定義,還可根據(jù)操作要求對(duì)構(gòu)件進(jìn)行腳本程序編寫(xiě).
實(shí)時(shí)數(shù)據(jù)庫(kù)如圖6所示.
圖6 實(shí)時(shí)數(shù)據(jù)庫(kù)Fig.6 Real time database
在控溫程序以及控制面板組態(tài)完成后,可將MCGS組態(tài)軟件和西門(mén)子PLC進(jìn)行連接通訊[11].首先連接好PLC和PPI電纜,然后在MCGS組態(tài)軟件開(kāi)發(fā)平臺(tái)上選擇相應(yīng)設(shè)備,設(shè)備層次關(guān)系構(gòu)建好后,就可進(jìn)行屬性修改.在STEP7-Micro/W IN編程軟件中點(diǎn)擊“設(shè)置PG/PC接口”圖標(biāo)按鈕,在該窗口修改各個(gè)通訊參數(shù),然后將控溫程序下載到PLC控制器中,最后對(duì)程序變量和組態(tài)軟件構(gòu)件進(jìn)行通道連接[12].
MCGS組態(tài)軟件中對(duì)構(gòu)件變量設(shè)置時(shí),可對(duì)構(gòu)件屬性進(jìn)行設(shè)置并與PLC中的程序變量進(jìn)行相應(yīng)的連接,否則會(huì)發(fā)生通訊不成功.連接完畢后,下載工程并進(jìn)入運(yùn)行環(huán)境,啟動(dòng)MVR溫度控制系統(tǒng),進(jìn)行在線(xiàn)調(diào)試[13].首先檢測(cè)手動(dòng)開(kāi)啟和停止變頻器的開(kāi)關(guān)按鈕是否通訊成功,然后觀(guān)察MCGS運(yùn)行界面的溫度曲線(xiàn)是否顯示正常;然后通過(guò)設(shè)定溫度值,啟動(dòng)變頻器,觀(guān)察二次蒸汽溫度的實(shí)時(shí)曲線(xiàn),如果當(dāng)二次蒸汽溫度低于設(shè)定溫度時(shí),實(shí)時(shí)曲線(xiàn)處于上升趨勢(shì),當(dāng)實(shí)時(shí)溫度達(dá)到設(shè)定溫度時(shí),實(shí)時(shí)曲線(xiàn)繼續(xù)向上波動(dòng),但基本維持在設(shè)定溫度附近,則說(shuō)明調(diào)節(jié)系統(tǒng)正常.本系統(tǒng)完全符合檢測(cè)要求,實(shí)現(xiàn)了對(duì)MVR系統(tǒng)中二次蒸汽溫度的智能化控制,并能更直接的觀(guān)察到二次蒸汽實(shí)時(shí)溫度的變化[14].
上述主要針對(duì)MVR系統(tǒng)中二次蒸汽溫度的控制問(wèn)題,構(gòu)建了基于MCGS組態(tài)軟件的PLC溫度監(jiān)控系統(tǒng).采集控制系統(tǒng)以西門(mén)子S7-200 CPU224XP PLC控制器為核心,首先通過(guò)測(cè)溫元件采集二次蒸汽溫度信號(hào),經(jīng)由EM235模塊進(jìn)行數(shù)據(jù)轉(zhuǎn)換并實(shí)時(shí)傳入PLC控制模塊,PLC通過(guò)設(shè)定程序?qū)?shù)進(jìn)行轉(zhuǎn)換和邏輯判斷,然后PLC根據(jù)用戶(hù)的控制需求對(duì)模擬量參數(shù)進(jìn)行調(diào)整控制,最終能夠達(dá)到系統(tǒng)設(shè)定的溫度值,提高了對(duì)二次蒸汽溫度的控制精度.監(jiān)控系統(tǒng)能夠及時(shí)顯示采集數(shù)據(jù)和建立實(shí)時(shí)溫度曲線(xiàn)[15],完成了對(duì)MVR系統(tǒng)中二次蒸汽溫度的在線(xiàn)監(jiān)控,很好的實(shí)現(xiàn)了人機(jī)信息交換和MVR系統(tǒng)的自動(dòng)化運(yùn)行.
致謝
在系統(tǒng)開(kāi)發(fā)的過(guò)程中,對(duì)于武漢紐威制藥機(jī)械有限公司提供的實(shí)驗(yàn)和現(xiàn)場(chǎng)測(cè)試工作的幫助,在此表示衷心的感謝!
[1]張琳,高麗麗,崔磊,等.MVR蒸發(fā)器管內(nèi)沸騰傳熱傳質(zhì)數(shù)值模擬[J].化工進(jìn)展,2013,32(3):543-548.
ZHANG Lin,GAO Li-li,CUI Lei,et al.Numerical simulation of boiling heatand mass transfer in the tube for MVR evaporator[J].Chem ical Industry and Engi-neering Progress,2013,32(3):543-548.(in Chinese)
[2]李芬紅.鍋爐溫度控制系統(tǒng)設(shè)計(jì)[J].內(nèi)江科技,2012(5):120-121.
LI Fen-hong.Design of boiler tem perature control system[J].Neijiang Technology,2012(5):120-121.(in Chinese)
[3]廖常初.PLC編程及應(yīng)用[M].北京:北京機(jī)械工業(yè)出版社,2005,5:1-82,83-170.
LIAO Chang-chu.PLC programm ing and application[M].Beijing:Beijing Machinery Industry Press,2005,5:1-82,83-170.(in Chinese)
[4]黃菊生,胡爭(zhēng)先.基于PLC和PC的溫控系統(tǒng)設(shè)計(jì)與開(kāi)發(fā)[J].自動(dòng)化儀表,2005(4):48-50.
HUANG Ju-sheng,HU Zheng-xian.Design and development of temperature control system based on PLC and PC[J].Automation Instrumentation,2005(4):48-50.(in Chinese)
[5]楊軍,答嘉曦.基于PLC和W inCE的溫度控制系統(tǒng)設(shè)計(jì)[J].計(jì)算機(jī)與數(shù)字工程,2006(6):135-137.
YANG Jun,DA Jia-xi.Design of control system of tem perature based on PLC and W inCE[J].Com puter and Digital Engineering,2006(6):135-137.(in Chinese)
[6]李紅萍,賈秀明,趙曉莉.基于MCGS的PLC溫度監(jiān)控系統(tǒng)設(shè)計(jì)[J].工業(yè)儀表與自動(dòng)化裝置,2012(5):83-85.
LIHong-ping,JIA Xiu-m ing,ZHAO Xiao-li.Design of the PLC temperature monitoring system based on MCGS[J].Industrial Instrumentation&Automation,2012(5):83-85.(in Chinese)
[7]包世健,江金蘭.基于組態(tài)和PLC控制的恒壓變頻供水系統(tǒng)設(shè)計(jì)[J].企業(yè)技術(shù)開(kāi)發(fā),2012(12):45-46.
BAO Shi-jian,JIANG Jin-lan.Design of frequency conversion water supply control system based on configuration and PLC[J].Technological Developmentof Enterprise,2012(12):45-46.(in Chinese)
[8]趙素娜,田海麗,李世曉.基于PLC的電熱鍋爐溫度控制系統(tǒng)設(shè)計(jì)[J].信息技術(shù),2012(7):99-101.
ZHAO Su-na,TIAN Hai-li,LI Shi-xiao.Design of electric boiler temperature control system based on PLC[J].Information Technology,2012(7):99-101.(in Chinese)
[9]張鳳雨,虎恩典,王佳梅.基于MCGS和PLC的爐溫控制系統(tǒng)[J].電子世界,2012(1):48-50.
ZHANG Feng-yu,HU En-dian,WANG Jia-mei.Furnace tem perature control system based on MCGS and PLC[J].ElectronicsWorld,2012(1):48-50.(in Chinese)
[10]楊紅,許銀萍,周永念,等.壓力容器模擬培訓(xùn)監(jiān)控系統(tǒng)設(shè)計(jì)[J].武漢工程大學(xué)學(xué)報(bào),2012,34(7):67-70.
YANG Hong,XU Yin-ping,HOU Yong-nian,et al. Design onmonitoring and controlling system of pressure vessel simulation training[J].Journal of Wuhan Institute of Technology,2012,34(7):67-70.(in Chinese)
[11]丁肇紅.基于PLC的溫度模糊控制系統(tǒng)設(shè)計(jì)[J].控制系統(tǒng),2008(24):73-74.
DING Zhao-hong.System design of fuzzy temperature control based on PLC[J].Control System,2008(24):73-74.(in Chinese)
[12]李建海,張樹(shù)團(tuán),劉陵順.基于PLC和組態(tài)軟件的溫度控制系統(tǒng)設(shè)計(jì)[J].機(jī)電一體化,2009,15(11):65-73.
Li Jian-hai,Zhang Shu-tuan,LIU Ling-shun.Design of tem perature control system s based on PLC and configuration software[J].MECHATRONICS,2009,15(11):65-73.(in Chinese)
[13]林壽英,林建烽,夏勝芬.基于PLC的高速公路隧道電力監(jiān)控系統(tǒng)優(yōu)化設(shè)計(jì)[J].武漢工程大學(xué)學(xué)報(bào),2009,31(3):85-88.
LIN Shou-ying,LIN Jian-feng,XIA Sheng-fen. Design and realization of encryption and decryption system supporting collaborative work[J].Journal of Wuhan Institute of Technology,2009,31(3):85-88.(in Chinese)
[14]王高平,皮云晗,周攀,等.家庭影院音響性能測(cè)試分析系統(tǒng)開(kāi)發(fā)[J].武漢工程大學(xué)學(xué)報(bào),2013,35(8):45-51.
WANG Gao-ping,PI Yun-han,ZHOU Pan,et al. Development ofmeasurement and analysis system of home theater sound performance[J].Journal of Wuhan Institute of Technology,2013,35(8):45-51.(in Chinese)
[15]吳和保,李曉微,龍玉陽(yáng),等.基于BP神經(jīng)網(wǎng)絡(luò)蠕鐵性能的快速預(yù)測(cè)[J].武漢工程大學(xué)學(xué)報(bào),2013,35(10):63-67.
WU He-bao,LI Xiao-wei,LONG Yu-yang,et al. Fast prediction of verm icular cast iron property base on BP neutral network[J].Journal of Wuhan Institute of Technology,2013,35(10):63-67.(in Chinese)
Temperature control system in material concentrated extroction technologyof application
WU He-Bao1,KE Chao1,ZHU Dong-jie1,HU Han-hua2,YU Jing-tan2
(1. School of Mechanical and Electrical Engineering,Wuhan Institution of Technology,Wuhan 430205,China;2. Wuhan Newway Pharmaceutical Machine Limited Company,Wuhan430065,China)
Mechanical vapor recompression technology(MVR)makes the best use of heat by mechanicalheating and pressurizing the secondary steam in the enrichment process,which has advantages of less use ofraw steam and low energy consuming. This technology was widely used in fields of pharmacy and food andwastewater treatment processing. The control of real- time temperature values of secondary steam incompression process is one of the key points to this technology . Based on the systematic study of MVRsystem,this paper is aimed to realize the online monitoring and data optimization by using the Siemens S7-200PLC controller to the secondary steam temperature before and after compression. Driven by designedcomputer software,the real time secondary steam temperature is collected and judged by using proportionintegration differentiation method. When real time temperature is lower than the setting value,the secondarysteam is heated up to setting value by frequency converter which can increase the compressor speed ofrotation. The communication of monitor and control generated system software and programmable logiccontrollers through the upper machine can achieve real- time monitoring of parameter settings and secondarysteam temperature. The results of this research have shown the system can realize real-time online monitoringof secondary steam temperature and rapid adjustment,as well as draw temperature curves and displaytemperature values in real time,which reduces labor workforce and ensures the automatic running of MVRsystem.
programmable logic controller;monitor and control generated system;proportion integrationdifferentiation control;configuration
TP273+.5
A
10.3969/j.issn.1674-2869.2014.01.013
1674-2869(2014)01-0063-06
本文編輯:陳小平
2013-11-28
吳和保(1963-),男,湖北麻城人,教授,博士.研究方向:金屬凝固理論及其數(shù)值模擬、金屬表面處理與防護(hù)、液態(tài)金屬精確成型、金屬霧化制粉、材料自動(dòng)化檢測(cè)與控制.