国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

RNAi技術(shù)介導(dǎo)舞毒蛾熱激蛋白Hsp40基因功能分析

2014-04-29 00:44:03王志英問(wèn)榮榮
安徽農(nóng)業(yè)科學(xué) 2014年26期

王志英 問(wèn)榮榮

摘要 [目的]測(cè)定Hsp40基因沉默對(duì)舞毒蛾生長(zhǎng)發(fā)育及Hsp40基因表達(dá)量的影響。[方法]體外合成雙鏈RNA(dsRNA),并將dsRNA通過(guò)微注射入舞毒蛾3齡幼蟲(chóng)體內(nèi),測(cè)定Hsp40基因沉默對(duì)舞毒蛾生長(zhǎng)發(fā)育及Hsp40基因表達(dá)量的影響。[結(jié)果]分別注射ddH2O、dsRNAGFP和dsRNAHsp40 后8 d,dsRNAGFP處理組舞毒蛾幼蟲(chóng)相對(duì)取食量顯著高于ddH2O和dsRNAHsp40處理組(P<0.05);但3種處理對(duì)舞毒蛾幼蟲(chóng)的相對(duì)生長(zhǎng)率、食物利用率、食物轉(zhuǎn)化率、近似消化率方面均無(wú)顯著性差異。注射后4 d,ddH2O處理組的舞毒蛾幼蟲(chóng)體重累計(jì)增長(zhǎng)率最大,其次是dsRNAHsp40處理組,dsRNAGFP處理組的體重累計(jì)增長(zhǎng)率最小,這與4 d的幼蟲(chóng)鮮重一致;其余時(shí)間點(diǎn),dsRNAHsp40處理組的體重累計(jì)增長(zhǎng)率均大于ddH2O和dsRNAGFP處理組。將1 μl(1 μg/μl)的dsRNA注射入舞毒蛾幼蟲(chóng)體內(nèi),6~48 h Hsp40基因表達(dá)量顯著下降,96 h基因表達(dá)量上調(diào)。[結(jié)論] 該研究為進(jìn)一步利用沉默舞毒蛾Hsp40基因在害蟲(chóng)防治中的應(yīng)用提供理論依據(jù)。

關(guān)鍵詞 舞毒蛾;Hsp40;RNA干擾;基因沉默

中圖分類號(hào) S188 文獻(xiàn)標(biāo)識(shí)碼

A 文章編號(hào) 0517-6611(2014)26-08890-04

Functional Analysis of Hsp40 Gene in Lymantria dispar Mediated RNAi Technology

WANG Zhi-ying et al (College of Forestry, Northeast Forestry University, Harbin,Heilongjiang 150040)

Abstract [Objective] The aim was to measure the effects of Hsp40 gene silencing on growth and Hsp40 gene expression of L.dispar larvae.[Method] The 1 μg/μl of double-stranded RNA (dsRNA) in vitro synthesized,was microinjected into 3rd instar Lymantria dispar larvae. The effects of Hsp40 gene silencing on growth and Hsp40 gene expression of L. dispar larvae were measured. [Result]The results showed the relative consumption rate (RCR) of L. dispar larvae microinjected by dsRNAGFP was higher than those microinjected by ddH2O and dsRNAHsp40 at 8 d time point. However, relative growth ratio (RGR), efficiency of conversion of ingested food (ECI), approximate digestibility (AD), efficiency of conversion of digested food (ECD) of L. dispar larvae among three treatments were no significant differences. After 4 d of microinjection, the weight cumulative growth rates of L. dispar larvae were decreasing order of ddH2O, dsRNAHsp40 and dsRNAGFP, which were consistent with the larvae weight. At the rest of time points, weight cumulative growth rate of dsRNAHsp40 treatment group were greater than other treatment groups. After microinjection 1 μg/μl of dsRNA into the L. dispar larvae ranged from 6 h to 48 h, Hsp40 gene expressions were significantly decreased,while those increased at 96 h. [Conclusion]These results provided a theoretical basis for further silencing Hsp40 gene of L. dispar into pest control.

Key words Lymantria dispar;Hsp40;RNAi;Gene silencing

NAPOLI等[1]將外源基因引入矮牽牛(Petunia hyhrida Vilm)后發(fā)現(xiàn)內(nèi)源同源基因出現(xiàn)沉默,將此現(xiàn)象稱為共抑制。GUO等[2]用反義RNA阻斷線蟲(chóng)基因表達(dá)的試驗(yàn)中發(fā)現(xiàn),反義和正義RNA都阻斷了基因的表達(dá)。1998年,F(xiàn)IRE等[3]在線蟲(chóng) (Caenorhabditis elegans)試驗(yàn)中發(fā)現(xiàn)在體外轉(zhuǎn)錄正義RNA時(shí)生成的雙鏈RNA(double strand RNA,dsRNA)導(dǎo)致基因表達(dá)的阻斷。將由dsRNA引發(fā)生物體同源序列mRNA降解而最終導(dǎo)致特異性基因轉(zhuǎn)錄后沉默的效應(yīng)稱為RNA干擾(RNA interference,RNAi)。這一現(xiàn)象主要是通過(guò)dsRNA被一種稱為Dicer的核酸酶切成21~25 nt的干擾性小RNA片段(siRNA),由siRNA介導(dǎo)識(shí)別并靶向切割同源性靶mRNA分子而實(shí)現(xiàn)基因沉默[4-7]?,F(xiàn)已在真菌、植物、線蟲(chóng)、昆蟲(chóng)、哺乳動(dòng)物等許多真核生物體內(nèi)都發(fā)現(xiàn)了這種現(xiàn)象。由于RNAi誘導(dǎo)基因沉默的特異性[8]和高效性,特別是在非模式生物中操作的簡(jiǎn)便性,被廣泛應(yīng)用于多種生物的基因功能研究和有害生物控制研究[9-10],并實(shí)現(xiàn)了對(duì)鱗翅目昆蟲(chóng)煙草天蛾(Manduca sexta)[11-12]、斜紋夜蛾(Spodoptera litura)[13]和棉鈴蟲(chóng)(Helicoverpa armigera)[14]等蟲(chóng)體內(nèi)部分基因功能的研究。

熱激蛋白(Heat Stress Proteins,Hsp)具有分子伴侶功能,主要參與生物體內(nèi)新生肽的運(yùn)輸、折疊、組裝、定位以及變性蛋白的復(fù)性和降解,在細(xì)胞生命活動(dòng)中起著重要作用[15]。Hsp40蛋白是一類重要的分子伴侶,具有重要的生理功能。研究表明Hsp40蛋白在生物體正常及熱激[16]、鹽[17]、重金屬[18]、毒物代謝等脅迫下參與蛋白質(zhì)的折疊、轉(zhuǎn)運(yùn)、分泌和目標(biāo)蛋白的降解等作用。Hsp40能夠通過(guò)調(diào)節(jié)Hsp40/Hsp70的ATPase活性,使得Hsp70結(jié)合的底物多肽發(fā)生折疊,促進(jìn)部分變性的蛋白復(fù)性(重新折疊)來(lái)保護(hù)脅迫損害的細(xì)胞并使其恢復(fù)正常功能[19-20]。Hsp40參與維持蛋白質(zhì)結(jié)構(gòu)的穩(wěn)定和變性蛋白的復(fù)性作用,是一種與細(xì)胞多種生命活動(dòng)密切相關(guān)的重要蛋白質(zhì)[21]。舞毒蛾(Lymantria dispar)是一種世界性的、周期性發(fā)生的為害嚴(yán)重的森林食葉害蟲(chóng),分布廣,食性雜,國(guó)外報(bào)道可取食500多種植物,國(guó)內(nèi)報(bào)道可為害楊、柳、落葉松、樟子松等多種植物,給林業(yè)生產(chǎn)造成較大的經(jīng)濟(jì)損失。筆者從舞毒蛾轉(zhuǎn)錄本文庫(kù)中獲得Hsp40基因全長(zhǎng)cDNA序列,測(cè)定了RNAi對(duì)舞毒蛾幼蟲(chóng)營(yíng)養(yǎng)利用及蟲(chóng)體鮮重變化情況的影響,并進(jìn)一步采用實(shí)時(shí)熒光定量PCR技術(shù)探討了體外合成dsRNA介導(dǎo)RNAi對(duì)Hsp40基因表達(dá)的影響,為RNAi技術(shù)在舞毒蛾防治中的應(yīng)用提供理論依據(jù)。

1 材料與方法

1.1 供試?yán)ハx(chóng)

舞毒蛾初始卵塊和人工飼料購(gòu)于中國(guó)林業(yè)科學(xué)研究院森環(huán)森保研究所,幼蟲(chóng)于(25±1) ℃,光照14 L∶10 D,相對(duì)濕度75%的條件下人工飼養(yǎng),取健康、大小一致舞毒蛾3齡幼蟲(chóng)進(jìn)行試驗(yàn)。

1.2 dsRNA合成

采用RNeasy Mini動(dòng)物組織總RNA提取試劑盒(Qiagen)提取舞毒蛾3齡幼蟲(chóng)的總RNA,用DNase I處理后,用1%瓊脂糖凝膠電泳和紫外分光光度計(jì)檢測(cè)總RNA的純度和濃度。從舞毒蛾轉(zhuǎn)錄本文庫(kù)中獲得舞毒蛾Hsp40基因的cDNA全長(zhǎng)序列和外源基因GFP的序列,分別設(shè)計(jì)引物(表1),每條特異性引物的5′端加20 bp的T7啟動(dòng)子序列。以PrimeScriptTM RT 試劑盒(TaKaRa)合成的cDNA第1鏈為模板進(jìn)行RT-PCR,反應(yīng)條件為:94 ℃ 3 min,94 ℃ 30 s,60 ℃ 30 s,72 ℃ 2 min,35個(gè)循環(huán),72 ℃ 7 min,擴(kuò)增產(chǎn)物經(jīng)電泳檢測(cè)確認(rèn)并純化后作為合成dsRNA的模板。參照MEGAscript RNAi試劑盒(Ambion)進(jìn)行dsRNA的合成,于-80 ℃保存?zhèn)溆谩?/p>

1.3 舞毒蛾?duì)I養(yǎng)利用與幼蟲(chóng)鮮重測(cè)定

將舞毒蛾人工飼料稱其鮮重后放入培養(yǎng)皿內(nèi),分別接入饑餓10 h后體重大小相近的蟲(chóng)體內(nèi),并利用微量進(jìn)樣器(HAMILTON#489323)從腹部倒數(shù)第2節(jié)注入1 μl(1 μg/μl)的ddH2O、dsRNAGFP和dsRNAHsp40的舞毒蛾3齡幼蟲(chóng),每組處理20頭幼蟲(chóng),重復(fù)3次[22]。正常飼喂8 d,每天按時(shí)稱量幼蟲(chóng)蟲(chóng)體鮮重。待正常取食8 d后將舞毒蛾幼蟲(chóng)、取食后的飼料及糞便分別移至50 ℃烘箱內(nèi)烘4 h后,再升溫至120 ℃烘至恒重,稱干重,另取剛蛻皮的30頭3齡幼蟲(chóng)饑餓10 h后稱重,并將新鮮人工飼料稱其鮮重,然后分別在上述條件下烘干至恒重稱取干重,計(jì)算幼蟲(chóng)和人工飼料干濕比,以推測(cè)幼蟲(chóng)和飼料干重。參照WALDBAUER[23]方法計(jì)算各營(yíng)養(yǎng)指標(biāo):相對(duì)生長(zhǎng)率(RGR)=(D-C)/[(C+D)/2]×100%;相對(duì)取食量(RCR)=(A-B)/[(C+D)/2];食物利用率(ECI)=(D-C)/(A-B)×100%;食物轉(zhuǎn)化率(ECD)=(D-C)/(A-B-E)×100%;近似消化率(AD) =(A-B-E)/(A-B)×100%。式中,A為試驗(yàn)前飼料干重;B為試驗(yàn)后飼料干重;C為試驗(yàn)前幼蟲(chóng)干重;D為試驗(yàn)后幼蟲(chóng)干重;E為幼蟲(chóng)糞便干重。

體重累計(jì)增長(zhǎng)率(%)=(注射后的體重-注射前的體重)/注射前的體重×100

1.4 實(shí)時(shí)熒光定量RT-PCR

將1 μl(1 μg/μl)GFP和Hsp40的基因dsRNA注射入舞毒蛾3齡幼蟲(chóng)體內(nèi),以ddH2O為對(duì)照,分別于6、24、48、96 h選取活潑的3齡幼蟲(chóng)提取總RNA,經(jīng)DNase I(Promega)消化DNA,采用PrimeScriptTM RT 試劑盒(TaKaRa)合成cDNA,將合成cDNA稀釋成100 μl,用作實(shí)時(shí)熒光定量PCR模板。實(shí)時(shí)熒光定量PCR使用試劑盒SYBR Green Real-time PCR Master mix(Toyobo)。內(nèi)參基因?yàn)锳ctin、EF1α和TUB,引物序列見(jiàn)表1。實(shí)時(shí)熒光定量PCR反應(yīng)體系為:10 μl 2×SYBR premix ExTaq酶、正向和反向引物(10 μmol/L)各1 μl、2 μl cDNA模板,加去離子水補(bǔ)足20 μl;反應(yīng)條件為:94 ℃ 30 s,94 ℃ 12 s,60 ℃ 30 s,72 ℃ 40 s,4個(gè)循環(huán),最后81 ℃ 1s讀板。每處理重復(fù)3次,用2-△△Ct方法進(jìn)行基因的表達(dá)量分析[24]。

1.5 數(shù)據(jù)統(tǒng)計(jì)分析

采用統(tǒng)計(jì)軟件SPSS17.0(SPSS Inc.,USA)單因素方差分析(One-way ANOVA,Duncan)進(jìn)行差異顯著性分析。采用EXCEL2007軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)和繪圖。

2 結(jié)果與分析

2.1 dsRNA質(zhì)量檢測(cè)

提取的舞毒蛾幼蟲(chóng)總RNA經(jīng)瓊脂糖凝膠電泳檢測(cè)和紫外分光光度計(jì)測(cè)得RNA的A260/A280=1.96,RNA質(zhì)量合格。合成相應(yīng)的dsRNA,用2%瓊脂糖凝膠檢測(cè)dsRNA的大?。▓D1),得到清晰的目的條帶,經(jīng)分光光度計(jì)測(cè)定,Hsp40基因dsRNA A260/A280=1.84,濃度為4.36 μg/μl,GFP基因dsRNA A260/A280=1.92,濃度為6.15 μg/μl。

通常昆蟲(chóng)RNAi研究的理想結(jié)果是靶標(biāo)基因的沉默和出現(xiàn)相應(yīng)生物表型的變化,然而并不是所有的試驗(yàn)都能出現(xiàn)可觀表型異常。ARAUJO等[27]給長(zhǎng)紅烈蝽(Rhodnius prolixus)喂食針對(duì)唾液腺NP2基因的dsRNA有效降低了靶標(biāo)基因的表達(dá)水平,但未產(chǎn)生可見(jiàn)的表型。OHNISHI等[28]研究RNAi對(duì)家蠶pgFAR、pgACBP和PBANR等信息素生物合成途徑中的相關(guān)基因產(chǎn)生抑制時(shí),發(fā)現(xiàn)信息素的生物合成卻受到了抑制,對(duì)蛹的發(fā)育和成蟲(chóng)羽化并未產(chǎn)生任何影響。該研究通過(guò)將體外合成的dsRNA注射入舞毒蛾3齡幼蟲(chóng)體內(nèi)有效降低了靶標(biāo)基因的表達(dá)水平;在正常飼喂條件下,分別注射ddH2O、dsRNAGFP和dsRNAHsp40后,這3種處理下舞毒蛾幼蟲(chóng)的相對(duì)生長(zhǎng)率、食物利用率、食物轉(zhuǎn)化率、近似消化率均無(wú)顯著性差異。舞毒蛾幼蟲(chóng)的體重累計(jì)增長(zhǎng)率顯示,注射后4 d,ddH2O對(duì)照組的體重累計(jì)增長(zhǎng)率最大,dsRNAGFP處理組的體重累計(jì)增長(zhǎng)率最小,這與4 d的蟲(chóng)體鮮重情況一致;在其余時(shí)間點(diǎn),dsRNAHsp40處理組的體重累計(jì)增長(zhǎng)率均大于ddH2O和dsRNAGFP處理組。熱激蛋白在細(xì)胞內(nèi)具有多種功能,包括新生蛋白的折疊、胞吞作用,多肽穿過(guò)細(xì)胞器質(zhì)膜的轉(zhuǎn)運(yùn),調(diào)整對(duì)各種脅迫的反應(yīng)及對(duì)預(yù)降解蛋白的靶標(biāo)等[29-31],并能夠通過(guò)促進(jìn)部分變性的蛋白復(fù)性(重新折疊)來(lái)保護(hù)脅迫損害的細(xì)胞并使其恢復(fù)正常功能[19-21]。Hsp40基因沉默可能會(huì)降低DnaK/Hsp70蛋白的活性,進(jìn)而無(wú)法及時(shí)促進(jìn)變性蛋白的復(fù)性,當(dāng)機(jī)體受到脅迫損害時(shí)細(xì)胞不能及時(shí)恢復(fù)其功能正常,降低害蟲(chóng)應(yīng)對(duì)外界脅迫時(shí)產(chǎn)生的蛋白修復(fù)能力,從而達(dá)到控制害蟲(chóng)的目的。筆者將通過(guò)舞毒蛾熱激蛋白Hsp40基因沉默對(duì)殺蟲(chóng)劑脅迫的響應(yīng)進(jìn)一步探尋害蟲(chóng)控制。

參考文獻(xiàn)

[1]NAPOLI C,LEMIEUX C,JORGENSEN R.Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans[J].Plant Cell,1990,2(4):279-289.

[2] GUO S,KEMPHUES K J.PAR-1,a gene required for establishing polarity in C.elegans embryos,encodes a putative ser/Thr kinase that is asymmetrically distributed[J].Cell,1995,81(4):611-620.

[3] FIRE A,XU S,MONTGOMERY M,et al.Potent and specific genetic interference mediated by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391:806-811.

[4] MISQUITTA L,PATERSON B M.Targeted disrup tion of gene function in Drosophila by RNA interference ( RNAi) :a role for nautilus in embryonic somatic muscle formation[J].Proc Natl Acad Sci USA,1999,96(4):1451-1456.

[5] ZAMORE P D,TUSCHL T,SHAR P P A,et al.RNAi:Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to23 nucleotide intervals[J].Cell,2000,101(1):25-33.

[6] BERNSTEIN E,CAUDY A A,HAMMOND S C.Role for a bidentate ribonuclease in the initiation step of RNA interference[J].Nature,2001,409(6818):363-366.

[7] HAMMOND S M,CAUDY A A,HANNON G J.Post-transcrip tional genesilencing by double-stranded RNA[J].Nat Rev Genet,2001,2 (2) :110 -119.

[8] MONTGOMERY M K,XU S Q,F(xiàn)IRE A.RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans[J].Proc Natl Acad Sci USA,1998,95(26):15502-15507.

[9] AUER C,F(xiàn)REDERICK R.Crop improvement using small RNAs:applications and predictive ecological risk assessments[J].Trends Biotechnol ,2009,27( 11) :644-651.

[10] PERRIMON N,NI J Q,PERKINS L.In vivo RNAi:today and tomorrow[J].CSH Perspect Biol,2010,2(8):3640.

[11] LEVIN D M,BREUER L N,ZHUANG S,et al.A hemocyte-specific integrin required for hemocytic encap sulation in the tobacco hornworm,Manduca sexta[J].Insect Biochem Mol Biol,2005,35(5):369-380.

[12] SOBERN M,LPEZ L P,LPEZ I,et al.Engineering modified Bt toxins to counter inect resistance[J].Science,2007,318(5856):1640-1642.

[13] RAJAGOPAL R,SIVAKUMAR S,AGRAWAL N,et al.Silencing of midgut aminopep tidase-N of Spodoptera litura by Double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor[J].Biol Chem,2002,277(49):46849-46851.

[14] SIVAKUMAR S,RAJAGOPAL R,VENKATESH G R,et al.Knock down of aminopep tidase-N from Helicoverpa armigera arvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac [J].Biol Chem,2007,282(10):7312-7319.

[15] SZABO A,KORSZUN R,HARTL F U,et al.A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates[J].EMBO,1996,15(2):408-417.

[16] 周人綱,MIERNYK J A.擬南芥AtJ3基因的克隆和分析[J].植物學(xué)報(bào),1999,41(6):597-602.

[17] ZHU J K,SHI J,BRESSAN R A,et al.Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ[J].Plant Cell,1993,5:341-350.

[18] 柴團(tuán)耀,張玉秀,趙文明.DnaJ-like蛋白cDNA的克隆及其在重金屬脅迫下的表達(dá)研究[J].自然科學(xué)進(jìn)展,2000(10):135-140.

[19] GLOVER J R,LINDQUIST S.Hsp104,Hsp70,and Hsp40:a novel chaperone system that rescues previously aggregated proteins[J].Cell,1998,94:73-82.

[20] MACARIO A J L,DE MACARIO E C.The archaeal molecular chaperone machine:peculiarities and paradoxes[J].Genetics,1999,152 (4):1277-1283.

[21] WEBER-BAN E U,REID B G,MIRANKERA D,et al.Global unfolding of a substrate protein by the Hsp100 chaperone ClpA[J].Nature,1999,401:90-93.

[22] 周慧丹,楊亦樺,吳益東.RNAi介導(dǎo)的棉鈴蟲(chóng)氨肽酶N基因Haapn1和鈣粘蛋白基因Ha_BtR沉默對(duì)Cry1Ac毒力的影響[J].昆蟲(chóng)學(xué)報(bào),2010,53(10):1097-1103.

[23] WALDBAUER G P.The consumption,digestion and utilization of solanaceous and non-solanaceous plants by larvae of the tobacco hornworm,Protoparce sexta (Johan.) (Lepidoptera:Sphingidae)[J].Entomologia Experimentalis et Applicate,2011,7(3):253-269.

[24] PFAFFL M W,HORGAN G W,DEMPFLE L.Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J].Nucleic Acids Res,2002,30:36.

[25] TERENIUS O,PAPANICOLAOU A,GARBUTT J S,et al.RNA interference in Lepidoptera:An overview of successful and unsuccessful studies and implications for experimental design[J].Insect Physiol,2011,57(2):231-245.

[26] OBER K A,JOCKUSCH E L.The roles of wingless and decapentap legic in axis and appendage development in the red flour beetle,Tribolium castaneum[J].Dev Biol,2006,294(2):391-405.

[27] ARAUJO R N,SANTOS A,PINTO F S,et al.RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus( Hemiptera:Reduviidae) by dsRNA ingestion or injection[J].Insect Biochem Mol Biol,2006,36(9):683-693.

[28] OHNISHI A,HULL J J,MATSUMOTO S.Targeted disruption of genes in the ombyx morisex pheromone biosynthetic pathway[J].PNAS,2006,103(12):4398-4403.

[29] TISSIERES A,MITCHELL H K,TRACY U M.Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs[J].Mol Biol,1974,84:389-398.

[30] BALLINGER D G,PARDUE M L.The control of protein synthesis during heat shock in Drosophila cells involves altered polypeptide elongation rates[J].Cell,1983,33(1):103-113.

[31] FEDER M E.Heat shock proteins,molecular chaperons and the stress response:evolutionary and ecological physiology[J].Annu Rev Physiol,1999,61:243-282.

黄冈市| 长阳| 贵定县| 磴口县| 油尖旺区| 丽江市| 依安县| 靖边县| 鄂伦春自治旗| 永泰县| 普格县| 五寨县| 张家界市| 长海县| 黑龙江省| 塔城市| 新巴尔虎左旗| 伽师县| 香格里拉县| 山阴县| 额敏县| 噶尔县| 铜梁县| 淮北市| 青河县| 荔浦县| 桦川县| 奇台县| 垦利县| 五台县| 双牌县| 怀来县| 巧家县| 清水河县| 平乡县| 兰溪市| 乐业县| 威信县| 聂拉木县| 朔州市| 衡水市|