李飛達(dá),李勇,劉歡,張歡歡,劉楚新,張興舉,竇紅偉,楊文獻(xiàn),杜玉濤
1. 深圳華大基因研究院,深圳 518083;
2. 深圳華大方舟生物技術(shù)有限公司,深圳 518083;
3. 深圳動(dòng)物基因組輔助育種工程實(shí)驗(yàn)室,深圳 518083
利用TALENs和手工克隆技術(shù)高效獲得GHR基因敲除巴馬豬
李飛達(dá)1,3,李勇1,2,3,劉歡1,3,張歡歡1,3,劉楚新1,3,張興舉1,3,竇紅偉2,楊文獻(xiàn)2,杜玉濤1,2,3
1. 深圳華大基因研究院,深圳 518083;
2. 深圳華大方舟生物技術(shù)有限公司,深圳 518083;
3. 深圳動(dòng)物基因組輔助育種工程實(shí)驗(yàn)室,深圳 518083
DNA編輯技術(shù)是基因靶向修飾技術(shù)的研究熱點(diǎn),已廣泛應(yīng)用于生物醫(yī)學(xué)和農(nóng)業(yè)研究。然而,傳統(tǒng)基因打靶技術(shù)存在效率低、成本高、工作量大等缺點(diǎn),其應(yīng)用受到了極大的限制。文章利用最近發(fā)展起來(lái)的新型人工核酸酶——轉(zhuǎn)錄激活因子樣效應(yīng)物核酸酶(Transcription activator-like effector nuclease, TALENs)介導(dǎo)的基因組定點(diǎn)修飾技術(shù),通過(guò)構(gòu)建特異識(shí)別豬生長(zhǎng)激素受體(GHR)基因的TALENs表達(dá)載體,共轉(zhuǎn)染巴馬胎豬成纖維細(xì)胞系,酶切鑒定G418抗性克隆細(xì)胞株的基因修飾效率為46.2%,其中2個(gè)為雙等位基因敲除的克隆細(xì)胞株。以雙等位基因敲除的克隆細(xì)胞株為核供體,利用手工克隆技術(shù)制備GHR-KO巴馬豬克隆胚,第6 d囊胚率為43.5%,654枚體外發(fā)育的囊胚移植6頭受體母豬,共獲得10頭存活的GHR-KO巴馬仔豬,其中7頭為雙等位基因敲除。體重檢測(cè)結(jié)果顯示,第 20周齡的 GHR-KO巴馬豬體重僅為對(duì)照巴馬豬的 50%。研究結(jié)果表明,TALENs和手工克隆技術(shù)能夠高效制備出基因敲除大動(dòng)物。GHR-KO巴馬豬的成功制備為研究豬GHR基因生理功能以及人類(lèi)侏儒癥分子機(jī)理提供了重要模型,也證明該技術(shù)比傳統(tǒng)基因打靶和克隆技術(shù)具備更簡(jiǎn)捷、快速、高效,更易于在生物醫(yī)學(xué)和農(nóng)業(yè)基因靶向修飾研究中推廣。
基因敲除;TALENs;手工克隆;GHR-KO
自20世紀(jì)80年代末誕生靶向性基因敲除小鼠以來(lái)[1,2],經(jīng)過(guò) 20多年的發(fā)展,基因打靶技術(shù)逐漸成為科研工作者選擇性修改基因組和探討基因功能的必備工具。由于傳統(tǒng)的基因敲除技術(shù)依靠細(xì)胞自身的DNA斷裂修復(fù)機(jī)制,打靶效率極其低下,人們一直在設(shè)法尋求新的提高基因打靶效率的方法。人工構(gòu)建的核酸內(nèi)切酶——鋅指核酸酶(Zinc-finger nucleases, ZFNs)能夠識(shí)別并切割靶DNA序列,造成DNA雙鏈斷裂,從而啟動(dòng)細(xì)胞損傷修復(fù)機(jī)制,從而大大提高基因敲除效率。然而設(shè)計(jì)并構(gòu)建一個(gè)剪切活性高、特異性好的ZFNs需要很大的工作量,且很多基因位點(diǎn)難以找到合適的ZFN靶點(diǎn),大大限制了ZFNs的應(yīng)用[3~5]。
近幾年發(fā)展起來(lái)的靶向基因編輯技術(shù)——轉(zhuǎn)錄激活因子樣效應(yīng)物核酸酶(Transcription activator-like effector nuclease, TALENs)技術(shù),不僅具備ZFNs相似的特異性識(shí)別和切割靶DNA區(qū)域,還具有易于構(gòu)建、特異性高、細(xì)胞毒性低等特點(diǎn)[3,5~8],至今已成功應(yīng)用于動(dòng)物、植物、微生物等多個(gè)物種[3,5,9]。
小型豬在解剖、代謝、生理方面,如心血管系統(tǒng)、消化系統(tǒng)、皮膚系統(tǒng)、骨骼發(fā)育、營(yíng)養(yǎng)代謝等,與人類(lèi)極為相似,是人類(lèi)比較醫(yī)學(xué)中較好的實(shí)驗(yàn)動(dòng)物材料[5,10]。生長(zhǎng)激素受體(Growth hormone receptor, GHR)是一種由單一基因編碼的跨膜蛋白,是細(xì)胞因子受體超家族成員之一。GHR在動(dòng)物生長(zhǎng)發(fā)育及新陳代謝中發(fā)揮重要作用,其功能缺失會(huì)導(dǎo)致動(dòng)物生長(zhǎng)發(fā)育遲緩[11,12]。豬GHR基因位于16號(hào)染色體上,包含10個(gè)外顯子,全長(zhǎng)16.14 kb,cDNA為1925 bp,共編碼 638個(gè)氨基酸,包括胞外域(生長(zhǎng)激素結(jié)合域)245個(gè)氨基酸、跨膜域30個(gè)氨基酸和胞內(nèi)域345個(gè)氨基酸[13]。胞外區(qū)缺失是GHR基因功能缺失的主要原因[14~16],GHR基因胞外區(qū)包含 1~6號(hào)外顯子。因此,本研究利用TALENs特異性識(shí)別并剪切GHR基因胞外編碼區(qū)2號(hào)外顯子,形成GHR胞外區(qū)突變,導(dǎo)致 GHR功能缺失,通過(guò)手工克隆技術(shù)制備GHR-KO巴馬豬,研究GHR基因在調(diào)控豬生長(zhǎng)發(fā)育中的生理作用,并為人類(lèi) Laron綜合癥的分子機(jī)制研究提供小型豬疾病動(dòng)物模型。
1.1 材料
細(xì)胞培養(yǎng)相關(guān)耗材為BD Falcon公司產(chǎn)品,相關(guān)試劑為L(zhǎng)ife technologies公司產(chǎn)品,手工克隆耗材為Nunc公司產(chǎn)品。巴馬胎豬成纖維細(xì)胞系為本實(shí)驗(yàn)室保存,內(nèi)切酶為NEB公司產(chǎn)品,PCR相關(guān)試劑為T(mén)AKARA公司產(chǎn)品。
1.2 方法
1.2.1 TALENs位點(diǎn)設(shè)計(jì)
利用在線(xiàn)軟件設(shè)計(jì)TALENs位點(diǎn)(https://tale-nt. cac.cornell.edu/node/add/talen)。豬GHR基因TALENs位點(diǎn)為5′-TCCTTGTCAGAGCATCTCAGAGTCTGCAG AGAGTTCATCCAGGCCTAGAGA- 3′,其中GHR-TALEN1識(shí)別5′-TCCTTGTCAGAGCATCTC-3′,GHR-TALEN2識(shí)別5′-TCATCCAGGCCTAGAGA-3′的反向互補(bǔ)序列,中間間隔區(qū)下劃線(xiàn)為PstⅠ酶切位點(diǎn),用于檢測(cè)TALENs剪切活性。
1.2.2 TALENs載體構(gòu)建
本研究采用的是Bedell等[17]和Doyon等[18]所采用的GoldyTALENs載體結(jié)構(gòu),即截短型的TALE蛋白,包含136個(gè)氨基酸殘基的N-端和63個(gè)氨基酸殘基的 C-端,并在 C-端與 FokⅠ核酸酶融合(在FokⅠ上分別突變3個(gè)氨基酸,上下游分別為FokⅠ-ELD和FokⅠ-KKR)。N端連接上NLS序列,N端與C端之間加2個(gè)IIS型BsmBⅠ酶切位點(diǎn)用于各RVD模塊的連接。將設(shè)計(jì)好的GoldyTALENs序列進(jìn)行全序列合成(上海捷瑞生物工程有限公司)。各RVD模塊(addgene,1000000024)通過(guò)Golden Gate方法連接到上游 pTAL-ELD(GHR-TALEN1)和下游pTAL-KKR (GHR- TALEN2)表達(dá)終載體中[19,20]。TALENs載體構(gòu)建好后測(cè)序鑒定,測(cè)序正確的GHR-TALEN1和GHR- TALEN2質(zhì)粒用無(wú)內(nèi)毒素質(zhì)粒提取試劑盒(OMEGA, D6950-01)提取備用。
1.2.3 TALENs質(zhì)?;钚则?yàn)證
復(fù)蘇PK15細(xì)胞系到6孔板,在含10%FBS的DMEM培養(yǎng)液中培養(yǎng),待細(xì)胞長(zhǎng)至約 60%密度時(shí),按照1 μg GHR-TALEN1+1 μg GHR-TALEN2+6 μL Lipo2000(Invitrogen, 11668-027)的用量共轉(zhuǎn)染豬PK15細(xì)胞系,轉(zhuǎn)染48 h后,0.25%胰酶(Life technologies, 25200056)消化收取細(xì)胞,按照Tissue DNA Kit (OMEGA,D3396-02)步驟提取DNA進(jìn)行活性鑒定,即將提取的DNA利用鑒定引物進(jìn)行擴(kuò)增,鑒定引物為GHR2-F(5′-TTCATGTTTCTGGGCTGTG-3′)和GHR2-R(5′-ACTTGTTTGCTTGCTGTGC-3′),擴(kuò)增條件為95℃ 2 min;95℃ 30 s,60℃ 30 s,72℃ 30 s,共32個(gè)循環(huán);最后再72℃延伸10 min。擴(kuò)增產(chǎn)物進(jìn)行PstI酶切檢測(cè)GHR位點(diǎn)的突變情況,PCR片段大小為452 bp,酶切片段大小為279 bp+173 bp。
1.2.4 GHR-KO細(xì)胞株的獲得及鑒定
轉(zhuǎn)染用 GHR-TALEN1、GHR-TALEN2及 pcDNA3.1(+)空質(zhì)粒的提取嚴(yán)格按照無(wú)內(nèi)毒素質(zhì)粒提取試劑盒(OMEGA, D6950-01)操作說(shuō)明進(jìn)行,AhdⅠ酶切 pcDNA3.1(+)空質(zhì)粒,按照 Cycle-Pure Kit(OMEGA, D6492-02)步驟回收目的片段,線(xiàn)性化的pcDNA3.1(+)空質(zhì)粒用于細(xì)胞轉(zhuǎn)染后的 G418抗性篩選。轉(zhuǎn)染前24 h,將巴馬胎豬成纖維細(xì)胞接種到6 cm皿中,加含15%FBS(Hyclone,sv30087.02)的DMEM培養(yǎng)液(Gibco11965-084)培養(yǎng)、待細(xì)胞長(zhǎng)至 90%密度時(shí),0.05%胰酶(Life technologies,25300-054)消化,血細(xì)胞計(jì)數(shù)板計(jì)數(shù),細(xì)胞用量為0.5~1×106,質(zhì)粒用量為2 μg GHR-TALEN1+2 μg GHR-TALEN2+800 ng線(xiàn)性化pcDNA3.1(+)質(zhì)粒,混勻,按照AmaxaTMBasic NucleofectorTMKit(Lonza,VPI-1002)步驟操作,利用Lonza核轉(zhuǎn)儀核轉(zhuǎn)細(xì)胞,選擇 U-023核轉(zhuǎn)程序,核轉(zhuǎn)完成后,輕輕將細(xì)胞轉(zhuǎn)移到 6孔板中。細(xì)胞長(zhǎng)至80%~90%密度時(shí),按10%密度接種到10 cm板中,待培養(yǎng)細(xì)胞培養(yǎng)到 30%~40%密度時(shí),加入含 500 μg/mL G418的培養(yǎng)液進(jìn)行篩選,直到出現(xiàn)明顯的單克隆為止。挑取單克隆到 48孔板中,長(zhǎng)滿(mǎn)后傳至24孔板中,長(zhǎng)滿(mǎn)后1傳2,一個(gè)用于提取細(xì)胞總DNA,一個(gè)用于后續(xù)實(shí)驗(yàn)。
按照Tissue DNA Kit(OMEGA,D3396-02)提取細(xì)胞總DNA,用GHR2-F/R引物進(jìn)行PCR,PCR產(chǎn)物用PstⅠ酶切檢測(cè)GHR突變情況,酶切結(jié)果只有單條帶的為雙敲細(xì)胞系,測(cè)序鑒定基因序列突變情況。
1.2.5 手工克隆和移植
按照已報(bào)道的手工克隆的方法進(jìn)行克隆[21~24],即先獲得卵巢,收集卵子,并將其在改良的TL-Hepes-PVA緩沖液中清洗后,放入培養(yǎng)板中,在培養(yǎng)箱內(nèi)進(jìn)行未成熟卵細(xì)胞體外成熟(in vitro maturation, IVM)培養(yǎng),得到成熟卵子。然后,將所得到的成熟卵子在顯微鏡下用小刀片去核,以便獲得成熟去核卵母細(xì)胞。挑取單個(gè)篩選獲得的陽(yáng)性GHR-KO轉(zhuǎn)基因細(xì)胞(包含利用大白豬胎兒成纖維細(xì)胞和巴馬耳源成纖維細(xì)胞制備的轉(zhuǎn)基因細(xì)胞系),利用融合儀電激將其融入到成熟去核卵母細(xì)胞中,制成重構(gòu)胚。重構(gòu)胚放入培養(yǎng)箱內(nèi),培養(yǎng)5~6 d,形成成熟囊胚。囊胚體外移植代孕母豬受體,妊娠114 d之后,小豬出生。
1.2.6 GHR-KO巴馬豬的鑒定
圖1 TALENs定向剪切GHR基因結(jié)構(gòu)示意圖A:GoldyTALENs結(jié)構(gòu)示意圖;B:TALENs定向剪切GHR基因位點(diǎn)示意圖。
剪耳鉗剪取2周齡仔豬耳朵樣品約30 mg,按照Tissue DNA Kit(OMEGA,D3396-02)步驟提取總DNA,按照1.2.3方法進(jìn)行鑒定,同時(shí)每2周同一時(shí)間點(diǎn)對(duì)空腹小豬進(jìn)行體重測(cè)定。
1.2.7 統(tǒng)計(jì)學(xué)分析
采用雙尾T檢驗(yàn),比較GHR敲除巴馬豬與野生型巴馬豬的體重差異。
2.1 TALENs載體構(gòu)建及活性鑒定
本研究所采用的是 Bedell等[17]和 Doyon等[18]所采用的GoldyTALENs載體結(jié)構(gòu),即N端保留136個(gè)氨基酸殘基,C端保留63個(gè)氨基酸殘基,中間為RVDs模塊序列。C端連接突變3個(gè)氨基酸的FokⅠ序列(上游為FokⅠ-ELD,下游為FokⅠ-KKR)。同時(shí)在N端加上NLS識(shí)別序列,如圖1A。模塊HD、NI、NG、NN分別識(shí)別C、A、T、G堿基[25]。在GHR基因2號(hào)外顯子上設(shè)計(jì)上下游TALEN識(shí)別位點(diǎn),模塊序列分別為5′-HDHDNGNGNNNGHDNINNNINNHDNINGHDNGHD-3′和 5′-HDNGHDNGNINNNNHDHDNGNNNNNINGNNNI-3′,中間5′-CTGCAG-3′為PstⅠ酶切位點(diǎn),如圖1B。
將構(gòu)建好的GHR-TALEN1和GHR-TALEN2質(zhì)粒轉(zhuǎn)染PK15細(xì)胞系,轉(zhuǎn)染48 h后收取細(xì)胞提取基因組DNA,用GHR2-F/R引物進(jìn)行PCR擴(kuò)增,PstⅠ酶切檢測(cè)GHR位點(diǎn)突變情況,結(jié)果見(jiàn)圖2,經(jīng)過(guò)PstⅠ酶切后,GHR-TALENs組與 EGFP對(duì)照組相比有未切開(kāi)條帶,說(shuō)明GHR-TALEN能剪切GHR基因位點(diǎn)。
2.2 GHR-KO細(xì)胞的篩選
圖2 GHR-TALENs質(zhì)?;钚澡b定圖1:GHR-TALENs;2:EGFP;3:PCR產(chǎn)物。
GHR-TALEN1、GHR-TALEN2和線(xiàn)性化pcDNA3.1(+)質(zhì)粒共轉(zhuǎn)巴馬胎豬成纖維細(xì)胞系,G418篩選獲得173個(gè)抗性克隆(圖3),提取克隆細(xì)胞總DNA,進(jìn)行PCR擴(kuò)增,按照活性鑒定的方法檢測(cè)各抗性克隆GHR位點(diǎn)的突變情況。經(jīng)酶切鑒定,單等位基因敲除克隆78個(gè),雙等位基因敲除克隆2個(gè),基因修飾效率為 46.2%(80/173),如圖 4所示。其中,GHR-16和GHR-148細(xì)胞克隆獲得的擴(kuò)增條帶未能被切開(kāi),為雙等位基因敲除細(xì)胞株(圖4A),Sanger測(cè)序結(jié)果顯示,GHR-16刪除 11 bp堿基,GHR-148刪除9 bp堿基(圖4B)。
2.3 手工克隆獲得GHR-KO陽(yáng)性豬
將雙等位基因敲除細(xì)胞株GHR-16作為核供體,與去核的卵母細(xì)胞結(jié)合,2次融合后,分別進(jìn)行 6次手工克隆操作,共得到1773個(gè)重構(gòu)胚,平均囊胚率為43.5%±2.1%(表1),重構(gòu)胚體外培養(yǎng)到第6 d (圖5),移植到發(fā)情的受體母豬子宮內(nèi),懷孕約114 d后,出生12頭巴馬仔豬,其中10頭活仔,2頭死胎(圖6)。
圖3 轉(zhuǎn)染得到的抗性克隆A:GHR-TALENs轉(zhuǎn)染后巴馬胎豬成纖維細(xì)胞系;B:GHR-TALENs轉(zhuǎn)染巴馬胎豬成纖維細(xì)胞系后篩選的抗性克隆。
圖4 細(xì)胞克隆鑒定A:GHR-TALENs部分抗性克隆PstⅠ酶切電泳鑒定圖;B:雙等位基因突變克隆細(xì)胞系測(cè)序結(jié)果。
表1 巴馬豬轉(zhuǎn)基因細(xì)胞的核移植結(jié)果
2.4 GHR-KO小豬鑒定
剪取10頭2周齡巴馬仔豬約30 mg耳朵組織,提取基因組DNA,PCR擴(kuò)增后PstⅠ酶切和測(cè)序鑒定GHR突變情況,從電泳結(jié)果可以看出,10只存活巴馬仔豬中有7只為GHR雙等位基因敲除仔豬,測(cè)序鑒定7頭缺失11 bp堿基,3頭沒(méi)有發(fā)生堿基突變(圖7)。
圖5 巴馬豬COCs體外成熟與體外發(fā)育A:體外成熟的巴馬豬COCs;B:D6發(fā)育的囊胚。
對(duì)GHR-KO和野生型巴馬豬從出生到20周齡的體重進(jìn)行動(dòng)態(tài)測(cè)定比較,每2周測(cè)定一次。測(cè)定結(jié)果顯示,與對(duì)照相比,除了第8周差異顯著(P<0.05)外,其他周齡GHR-KO巴馬豬體重都極顯著低于野生型(P<0.01)。GHR-KO巴馬豬第6周開(kāi)始生長(zhǎng)緩慢,第20周時(shí),體重僅為野生型的50%。如圖8所示。
圖6 出生1周的巴馬仔豬
圖8 GHR-KO巴馬豬體重指標(biāo)監(jiān)測(cè)結(jié)果A:GHR-KO巴馬豬生長(zhǎng)曲線(xiàn)。*表示差異顯著(P<0.05),**表示差異極顯著(P<0.01)。B:5月齡GHR-KO巴馬豬與對(duì)照豬。
傳統(tǒng)打靶技術(shù)效率低,應(yīng)用大大受限。ZFN技術(shù)實(shí)驗(yàn)設(shè)計(jì)復(fù)雜、成本高,且特異性不高[4],而TALEN技術(shù)實(shí)驗(yàn)簡(jiǎn)單,周期短,識(shí)別序列特異性高,剪切效率高及脫靶效率低等特點(diǎn)[19],至今已經(jīng)被成功應(yīng)用于動(dòng)物、植物和物微生物在內(nèi)的多個(gè)物種[20]。本實(shí)驗(yàn)室根據(jù)Bedell等[17]和Doyon等[18]結(jié)果改造的TALEN表達(dá)骨架和突變FokⅠ酶(ELD/KKR),構(gòu)建的GHR靶向修飾TALENs質(zhì)粒,轉(zhuǎn)染并篩選獲得細(xì)胞克隆,酶切鑒定基因靶向修飾效率為 46.2%,與Carlson等[6]、Tan等[9]報(bào)道的效率相當(dāng),但未達(dá)到Xin等[5]所報(bào)道的89.5%的修飾效率。Xin等[5]通過(guò)電穿孔方法將靶向修飾 GGTA1基因的 TALENs質(zhì)粒和pcDNA3.1質(zhì)粒共轉(zhuǎn)染到巴馬胎豬成纖維細(xì)胞系,獲得了187個(gè)GGTA1突變的細(xì)胞克隆,占總209個(gè)克隆的89.5%?;虬邢蛐揎椥实牟町惪赡苁遣煌幕蛐蛄?、位置以及細(xì)胞轉(zhuǎn)染效率所致,相同基因在不同細(xì)胞中的基因修飾效率存在差異[26],相同細(xì)胞中不同的基因剪切效率同樣存在差異[6,27~29]。
與傳統(tǒng)的體細(xì)胞核移植技術(shù)相比,手工克隆技術(shù)具有成本低、操作簡(jiǎn)單、效率高等特點(diǎn),特別適合規(guī)模化應(yīng)用及推廣[21,23]。本研究利用手工克隆生產(chǎn)的GHR-KO囊胚,囊胚效率平均高達(dá)43.5%。這可能是手工克隆的過(guò)程中融合了2個(gè)去核卵細(xì)胞胞質(zhì),能提供更多營(yíng)養(yǎng)物質(zhì)[21]。本研究中敲除豬的出生存活率達(dá) 83.3%(出生活仔/出生仔豬總數(shù)),比Zhang等[23]的 75%、Lai等[30]的 35.7%和 Pan等[31]的 70%要高。本研究結(jié)果表明,與傳統(tǒng)基因打靶和克隆技術(shù)相比,TALENs和手工克隆技術(shù)能夠更簡(jiǎn)捷、快速、高效制備出基因敲除大動(dòng)物,更易于在農(nóng)業(yè)和生物醫(yī)學(xué)基因靶向修飾研究中推廣應(yīng)用。
實(shí)驗(yàn)動(dòng)物在人類(lèi)疾病研究中發(fā)揮著重要作用,長(zhǎng)期以來(lái)嚙齒類(lèi)動(dòng)物由于其制作方法簡(jiǎn)便、實(shí)驗(yàn)成本低、實(shí)驗(yàn)周期短等特點(diǎn)而被人們常用作實(shí)驗(yàn)動(dòng)物,然而由于其個(gè)體大小、生理學(xué)和病理學(xué)特征等與人類(lèi)有較大差異,往往不能獲得滿(mǎn)意的結(jié)果。小型豬解剖、生理學(xué)和免疫學(xué)特征與人類(lèi)極其相似,是人類(lèi)比較醫(yī)學(xué)中良好較好的實(shí)驗(yàn)動(dòng)物材料[10],如囊胚性纖維癥疾病克隆豬模型[32,33]、阿爾茨海默病豬模型[34]及生物節(jié)律紊亂豬模型[22]、皮膚炎癥豬模型[35]、動(dòng)脈粥樣硬化病豬模型[36]。本文通過(guò)基因工程及手工克隆方法高效獲得GHR-KO巴馬豬,每2周進(jìn)行體重監(jiān)測(cè),與對(duì)照相比,GHR-KO巴馬豬生長(zhǎng)遲緩,發(fā)育受阻,與Zhou等[37]建立的GHR-KO敲除小鼠出生后出現(xiàn)的生長(zhǎng)阻滯相似。通過(guò)敲除小鼠建立的首個(gè) Laron綜合征哺乳動(dòng)物模型,雖然能夠模擬人類(lèi) Laron綜合征的病理特征[38,39],但是仍有較多的差異點(diǎn),如人類(lèi) Laron綜合征病人在嬰兒期會(huì)患低血糖癥,而Laron小鼠的血糖正常[40]。Laron綜合征兒童胰島素水平很高,表現(xiàn)出胰島素抵抗,而Laron綜合征小鼠胰島素水平很低[41,42]。因此,本研究希望通過(guò)敲除巴馬豬GHR基因,獲得跟人類(lèi)更加相近的Laron綜合征豬模型。未來(lái)將會(huì)對(duì)GHR-KO巴馬豬做更深入的研究,如測(cè)定血液中的GH、IGF1蛋白含量高低、GH-GHR通路中GHR基因下游各基因的表達(dá)模式等,以期獲得可推廣的疾病模型。
[1] Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3): 503-512.
[2] Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature, 1988, 336(6197): 348-352.
[3] 沈延, 肖安, 黃鵬, 王唯曄, 朱作言, 張博. 類(lèi)轉(zhuǎn)錄激活因子效應(yīng)物核酸酶(TALEN)介導(dǎo)的基因組定點(diǎn)修飾技術(shù). 遺傳, 2013, 35(4): 395-409.
[4] 肖安, 胡瑩瑩, 王唯曄, 楊志苖, 王展翔, 黃鵬, 佟向軍,張博, 林碩. 人工鋅指核酸酶介導(dǎo)的基因組定點(diǎn)修飾技術(shù). 遺傳, 2011, 33(7): 665-683.
[5] Xin J, Yang HQ, Fan NN, Zhao BT, Ouyang Z, Liu ZM, Zhao Y, Li XP, Song J, Yang Y, Zou QJ, Yan QM, Zeng YZ, Lai LX. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS ONE, 2013, 8(12): e84250.
[6] Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA, 2012, 109(43): 17382-17387.
[7] Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol, 2010, 48(1): 419-436.
[8] Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CHK, Dawid IB, Chen Y, Zhao H. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA, 2012, 109(43): 17484-17489.
[9] Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA, 2013, 110(41): 16526-16531.
[10] Luo YL, Li J, Liu Y, Lin L, Du YT, Li ST, Yang HM, Vajta G, Callesen H, Bolund L, S?rensen CB. High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res, 2011, 20(5): 975-988.
[11] David A, Hwa V, Metherell LA, Netchine I, Camacho-Hübner C, Clark AJL, Rosenfeld RG, Savage MO. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr Rev, 2011, 32(4): 472-497.
[12] Savage MO, Attie KM, David A, Metherell LA, Clark AJ, Camacho-Hubner C. Endocrine assessment, molecular characterization and treatment of growth hormone insensitivity disorders. Nat Clin Pract Endocrinol Metab, 2006, 2(7): 395-407.
[13] Cioffi JA, Wang X, Kopchick JJ. Porcine growth hormone receptor cDNA sequence. Nucleic Acids Res, 1990, 18(21): 6451-6451.
[14] Laron Z. Growth hormone insensitivity (Laron syndrome). Rev Endocr Metab Disord, 2002, 3(4): 347-355.
[15] López-Bermejo A, Buckway CK, Rosenfeld RG. Genetic defects of the growth hormone-insulin-like growth factor axis. Trends Endocrinol Metab, 2000, 11(2): 39-49.
[16] Galli-Tsinopoulou A, Nousia-Arvanitakis S, Tsinopoulos I, Bechlivanides C, Shevah O, Laron Z. Laron syndrome. Laron syndrome. First report from Greece. Hormones (Athens), 2003, 2(2): 120-124.
[17] Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG, 2nd, Tan WF, Penheiter SG, Ma AC, Leung AYH, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. In vivo genome editing using a highefficiency TALEN system. Nature, 2012, 491(7422): 114-118.
[18] Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang JB, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods, 2010, 8(1): 74-79.
[19] Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39(12): e82.
[20] 沈延, 黃鵬, 張博. TALEN 構(gòu)建與斑馬魚(yú)基因組定點(diǎn)突變的實(shí)驗(yàn)方法與流程. 遺傳, 2013, 35(4): 533-544.
[21] 張鵬, 楊珍珍, 竇紅偉, 李偉杭, 律波, Lars B, 杜玉濤,譚萍萍, 馬潤(rùn)林. 利用改進(jìn)的手工克隆技術(shù)生產(chǎn)轉(zhuǎn) GFP基因豬克隆胚胎. 遺傳, 2011, 33(5): 527-532.
[22] Liu H, Li Y, Wei Q, Liu CX, Bolund L, Vajta G, Dou HW, Yang WX, Xu Y, Luan J, Wang J, Yang HM, Staunstrup NH, Du YT. Development of transgenic minipigs with expression of antimorphic human cryptochrome 1. PLoS ONE, 2013, 8(10): e76098.
[23] Zhang P, Zhang Y, Dou H, Yin J, Chen Y, Pang X, Vajta G, Bolund L, Du Y, Ma RZ. Handmade cloned transgenic piglets expressing the nematode fat-1 gene. Cell Reprogram, 2012, 14(3): 258-266.
[24] Fan NN, Chen JN, Shang ZC, Dou HW, Ji GZ, Zou QJ, Wu L, He LX, Wang F, Liu K, Liu N, Han JY, Zhou Q, Pan DK, Yang DS, Zhao BT, Ouyang Z, Liu ZM, Zhao Y, Lin L, Zhong CM, Wang QL, Wang SQ, Xu Y, Luan J, Liang Y, Yang ZZ, Li J, Lu CX, Vajta G, Li ZY, Ouyang HS, Wang HY, Wang Y, Yang Y, Liu ZH,Wei H, Luan ZD, Esteban MA, Deng HK, Yang HM, Pei DQ, Li N, Pei G, Liu L, Du YT, Xiao L, Lai LX. Piglets cloned from induced pluripotent stem cells. Cell Res, 2013, 23(1): 162-166.
[25] Miller JC, Tan SY, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011, 29(2): 143-148.
[26] Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng XD, Hinkley SJ, Rebar EJ, GregoryPD, Urnov FD, Jaenisch R. Genetic engineering of human ES and iPS cells using TALE nucleases. Nat Biotechnol, 2011, 29(8): 731-734.
[27] Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol, 2012, 30(5): 460-465.
[28] Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JRJ. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res, 2012, 40(16): 8001-8010.
[29] Moore FE, Reyon D, Sander JD, Martinez SA, Blackburn JS, Khayter C, Ramirez CL, Joung JK, Langenau DM. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE, 2012, 7(5): e37877.
[30] Lai LX, Kang JX, Li RF, Wang JD, Witt WT, Yong HY, Hao YH, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai YF. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol, 2006, 24(4): 435-436.
[31] Pan DK, Zhang L, Zhou YR, Feng C, Long C, Liu X, Wan R, Zhang J, Lin AX, Dong EQ, Wang SC, Xu HG, Chen HX. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Sci China Life Sci, 2010, 53(4): 517-523.
[32] Rogers CS, Hao YH, Rokhlina T, Samuel M, Stoltz DA, Li YH, Petroff E, Vermeer DW, Kabel AC, Yan ZY, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest, 2008, 118(4): 1571-1577.
[33] Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB, Jr., Zabner J, Prather RS, Welsh MJ. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science, 2008, 321(5897): 1837-1841.
[34] Kragh PM, Nielsen AL, Li J, Du YT, Lin L, Schmidt M, B?gh IB, Holm IE, Jakobsen JE, Johansen MG, Purup S, Bolund L, Vajta G, Jorgensen AL. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res, 2009, 18(4): 545-558.
[35] Staunstrup NH, Madsen J, Primo MN, Li J, Liu Y, Kragh PM, Li R, Schmidt M, Purup S, Dagn?s-Hansen F, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG. Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin. PLoS ONE, 2012, 7(5): e36658.
[36] Al-Mashhadi RH, S?rensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du YT, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med, 2013, 5(166): 166ra1.
[37] Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci USA, 1997, 94(24): 13215-13220.
[38] Kopchick JJ, Laron Z. Is the Laron mouse an accurate model of Laron syndrome? Mol Genet Metab, 1999, 68(2): 232-236.
[39] List EO, Coschigano KT, Kopchick JJ. Growth hormone receptor/binding protein (GHR/BP) knockout mice: a 3-year update. Mol Genet Metab, 2001, 73(1): 1-10.
[40] Laron Z, Pertzelan A, Karp M, Keret R, Eshet R, Silbergeld A. Laron Syndrome-a unique model of IGF-1 deficiency. // Pediatric and adolescent endocrinology. Vol. 24. New York: Karger, 1993, 24: 3.
[41] Laron Z, Avitzur Y, Klinger B. Insulin Resistance in Laron Syndrome (Primary Insulin-like Growth Factor-I (IGF-I) Deficiency) and Effect of IGF-I Replacement Therapy. J Pediatr Endocrinol Metab, 1997, 10(Suppl.): 105-116.
[42] Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology, 2000, 141(7): 2608-2613.
(責(zé)任編委: 任 軍)
Production of GHR double-allelic knockout Bama pig by TALENs and handmade cloning
Feida Li1,3, Yong Li1,2,3, Huan Liu1,3, Huanhuan Zhang1,3, Chuxin Liu1,3, Xingju Zhang1,3, Hongwei Dou2, Wenxian Yang2, Yutao Du1,2,3
1. BGI-Shenzhen, Shenzhen 518083, China;
2. BGI ARK Biotechnology Co., Ltd, Shenzhen 518083, China;
3. Shenzhen Engineering Laboratory for Genomics-Assisted Animal Breeding, Shenzhen 518083, China
Abstract:DNA editing techniques for targeted genome modification have witnessed remarkable advances and been widely used in various organisms. However, traditional gene targeting and cloning method has been shown to be low efficient, time-consuming and expensive for generating knockout animals, especially for big animals. Here we report the generation of site-specific genome modified pig with the newly developed artificially engineered sequence-specific endonucleases (transcription activator-like effector nuclease, TALENs) and handmade cloning (HMC) methods. First, we constructed the porcine GHR-knockout vector according to TALENs kit protocol. To obtain the nuclear donor, the fetal fibroblast cell of Bama (BM) pig were transfected with GHR-knockout vector in G418 selection medium. We collected 173 cell for further positive identification which showed that 46.2% (78/173) of the clones were GHR-knockout cell strains. We chose one bi-allelic knockout cell strain as nuclear donor to produce reconstructed embryos by HMC. It was shown that the blastocyst rate was 43.5% at the 6thday in vitro, then 654 HMC-blastocysts were transplanted to uterus of six recipient sows. Finally, a total of 10 live offspring were delivered including 7 bi-allelic knockout piglets. Fibroblasts were obtained from ear biopsies for GHR knockout detection. The body weight of the piglets was measured consecutively, and it was found that the GHR-/-pigs were only 50% smaller than that of the controls at the 20thweek. In conclusion, our results indicate that TALENs and HMC technology can rapidly and efficiently produce knockout animals for agricultural and biomedical research.
gene knockout; TALENs; handmade cloning; GHR-KO
2014-02-27;
2014-04-22
農(nóng)業(yè)部動(dòng)物轉(zhuǎn)基因重大專(zhuān)項(xiàng)課題(編號(hào):2014ZX0801007B)和深圳市生物產(chǎn)業(yè)發(fā)展專(zhuān)項(xiàng)資金(編號(hào):JC201005260182A)資助
李飛達(dá),碩士,助理研究員,專(zhuān)業(yè)方向:動(dòng)物基因工程。E-mail:lifeida@genomics.cn
杜玉濤,博士,副教授,研究方向:克隆與基因工程。E-mail: duyt@genomics.cn
10.3724/SP.J.1005.2014.0903
時(shí)間: 2014-7-30 11:23:54
URL: http://www.cnki.net/kcms/detail/11.1913.R.20140730.1123.001.html