国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

超臨界技術(shù)在植物活性成分微粉化方面的應(yīng)用進(jìn)展

2014-05-30 10:48:04趙修華劉影葛云龍等
安徽農(nóng)業(yè)科學(xué) 2014年5期
關(guān)鍵詞:混合物超臨界粒徑

趙修華 劉影 葛云龍等

摘要 綜述20年來(lái)超臨界技術(shù)在植物活性成分微粉化方面的應(yīng)用進(jìn)展,簡(jiǎn)要說(shuō)明微粉化植物活性成分的表征方法、特點(diǎn)及發(fā)展前景。

關(guān)鍵詞 超臨界流體;微粉化;植物活性成分;超臨界溶液快速膨脹技術(shù);超臨界溶液反溶劑法制備技術(shù)

中圖分類號(hào) S567 文獻(xiàn)標(biāo)識(shí)碼

A 文章編號(hào) 0517-6611(2014)05-01291-04

Abstract The research progress of supercritical technology in micronized plant active ingredients was reviewed, the characterization, feature and the future development prospects of micronized plant active ingredients were elaborated.

Key words Supercritical fluid; Micronization; Plant active ingredients; Rapid expansion of supercritical solution (RESS); Preparation of supercritical solution by antisolvent method (SAS)

植物成分分為初生代謝產(chǎn)物和次生代謝產(chǎn)物2種。初生代謝產(chǎn)物是指生物在生長(zhǎng)過(guò)程中通過(guò)新陳代謝產(chǎn)生的,如α-酮戊二酸、檸檬酸、谷氨酸、丙氨酸等。次生代謝產(chǎn)物是指由次生代謝產(chǎn)生的一類細(xì)胞生命活動(dòng)或植物生長(zhǎng)發(fā)育正常運(yùn)行的非必需的小分子有機(jī)化合物,如萜類、黃酮、生物堿、甾體、木質(zhì)素、礦物質(zhì)等。這些物質(zhì)對(duì)人類以及各種生物具有生理促進(jìn)作用。植物活性成分源于次生代謝產(chǎn)物。其種類多,用途廣泛,大多數(shù)產(chǎn)物用于醫(yī)藥學(xué)領(lǐng)域的研究,已在世界成為一個(gè)分支領(lǐng)域。但是,很多次生代謝產(chǎn)物的水溶性都很低,顆粒較大,導(dǎo)致很難被人體吸收,使得植物活性成分的生物利用度降低。

1 植物活性成分的水溶性

植物活性成分分為單體和有效部位(混合物)。植物活性成分單體是指來(lái)源于植物的一種純物質(zhì),具有某種活性,含量在98.5%以上,如喜樹(shù)堿、紫杉醇、白藜蘆醇等屬于單體;植物活性成分的有效部位是與來(lái)源于植物的分子結(jié)構(gòu)相似的一類物質(zhì),混合在一起具有某種活性,如茶葉、三七總皂苷、銀杏和人參提取物等屬于有效部位。植物活性成分單體應(yīng)用十分廣泛,而有效部位在我國(guó)早期應(yīng)用很多,現(xiàn)已在國(guó)際上得到認(rèn)可。越來(lái)越多新的植物活性成分存在水溶性差、溶解度低的缺點(diǎn),在美國(guó)藥典收載的藥物中超過(guò)1/3的藥物存在水溶性差的問(wèn)題。如何提高這些植物活性化學(xué)物的水溶性和生物利用度,達(dá)到可接受的生物有效性,對(duì)醫(yī)學(xué)領(lǐng)域無(wú)疑是一個(gè)重大的挑戰(zhàn)[1]。

2 超臨界技術(shù)微粉化的特點(diǎn)

基于超臨界流體制備的活性成分微粉具有顆粒小、比表面積大、活性中心多、表面反應(yīng)活性高、吸附能力強(qiáng)等特性,因此它擁有很多常規(guī)藥物所不具備的作用。超臨界微粉化是由晶體狀態(tài)變成無(wú)定形態(tài)的過(guò)程,可提高微粉的溶解度和溶出速率。該過(guò)程是經(jīng)過(guò)物理作用來(lái)實(shí)現(xiàn)微粉化的,不會(huì)改變藥物的化學(xué)性質(zhì),所以微粉化以后的藥物活性不變。藥物通過(guò)微粉化以后,具有粒徑十分微小的特點(diǎn),可通過(guò)生物體內(nèi)的大部分組織屏障,而且進(jìn)入體內(nèi)以后的吸收、分布、代謝和排泄循環(huán)系統(tǒng)都與傳統(tǒng)藥物不同。微粉化藥物的這些特點(diǎn)可以改善某些傳統(tǒng)藥物在體內(nèi)作用小、生物利用度低的缺點(diǎn)。

3 植物活性成分超臨界微粉化的進(jìn)展

為了全面了解近20年來(lái)植物活性成分超臨界微粉化方面的研究現(xiàn)狀,檢索了國(guó)際權(quán)威數(shù)據(jù)庫(kù)web of science中收錄的文獻(xiàn),一共有54篇(表1)。從圖1可以看出,1993~2007年間相關(guān)的研究報(bào)道較少,每年只有1~2篇;從2008年起,文獻(xiàn)數(shù)大幅上升,在2011、2012年表現(xiàn)尤為活躍(2013年文獻(xiàn)數(shù)較少,可能是web of science數(shù)據(jù)庫(kù)收錄滯后的原因)。這表明植物活性成分的微粉化在學(xué)術(shù)界越來(lái)越受到重視。通過(guò)將上述文獻(xiàn)按照不同的指標(biāo)進(jìn)行量化,表現(xiàn)出以下特點(diǎn)。①5年文獻(xiàn)數(shù)。圖2a為1993~2013年間以5年為1個(gè)周期的文獻(xiàn)比例圖,其中1993~1997和1998~2002年的百分比分別為3.70%和1.85%,而2003~2007年上升為11.11%,2008~2013年大幅度提高,占總數(shù)的83.33%。②粒徑大小。圖2b為文獻(xiàn)報(bào)道的微粉粒徑情況,粒徑在>1 μm、500~1 000 nm和<500 nm 3個(gè)粒徑區(qū)間的百分?jǐn)?shù)分別為43%、15%和42%,即粒徑小于1 000 nm的合計(jì)占57%,表明超臨界微粉化技術(shù)如今達(dá)到一個(gè)比較精細(xì)化的水平。③超臨界微粉化工藝的類別。圖2c是廣義的SAS和RESS 2種工藝的比例圖,百分?jǐn)?shù)分別為70.37%和29.63%,表明植物活性成分中能溶于超臨界二氧化碳的數(shù)量相對(duì)較少,絕大多數(shù)活性成分需采用SAS法微粉化。④植物活性成分的類別。圖2d文獻(xiàn)中報(bào)道的單體和混合物分布圖,其中單體占79.63%,混合物為20.37%,混合物的比例也達(dá)到一個(gè)較高的水平。由于混合物含有的成分較多,對(duì)粒徑和含量的控制相對(duì)困難,因而這也是該領(lǐng)域研究的一個(gè)難點(diǎn)。

4 微粉化植物活性成分的表征

微粉化植物活性成分的表征是非常重要的,目前主要集中在對(duì)其化學(xué)結(jié)構(gòu)、物理結(jié)構(gòu)、形貌和粒徑、溶劑殘留等方面。在化學(xué)結(jié)構(gòu)測(cè)定方面,許多研究都采用傅氏轉(zhuǎn)換紅外線光譜分析儀(FTIR)和液相色譜質(zhì)譜聯(lián)用(LCMS)來(lái)檢測(cè)和分析植物活性成分微粉化之后的化學(xué)結(jié)構(gòu)是否發(fā)生變化。幾乎所有的研究都表明,經(jīng)過(guò)超臨界微粉化的植物活性成分的化學(xué)結(jié)構(gòu)沒(méi)有發(fā)生變化。它是一種條件十分溫和的微粉化技術(shù),尤其適合具熱敏性、易氧化等特性的植物活性成分。在物理結(jié)構(gòu)測(cè)定方面,通常采用X射線粉末衍射(XRD)、差示掃描量熱儀(DSC)和熱重分析儀(TGA)等方法聯(lián)用分析微粉化前后晶體結(jié)構(gòu)的變化,即是否形成新的晶體或結(jié)晶度降低或形成無(wú)定形態(tài),從而推測(cè)所得微粉化植物活性成分在溶解度、溶出速度、熱穩(wěn)定性等方面可能出現(xiàn)的特點(diǎn)。在形貌和粒徑測(cè)定方面,隨著檢測(cè)設(shè)備的不斷出現(xiàn),微粉化活性成分的形貌的測(cè)定,也由早期的放大倍率只有1 000倍的光學(xué)顯微鏡逐漸發(fā)展成為掃描電鏡、透射電鏡來(lái)進(jìn)行檢測(cè),目前還出現(xiàn)具有3維成像功能的原子力顯微成像觀測(cè)技術(shù),可以實(shí)現(xiàn)在長(zhǎng)、寬、高3個(gè)維度進(jìn)行量化測(cè)定。在溶劑殘留方面,將樣品采用易揮發(fā)溶劑進(jìn)行萃取,然后采用氣相色譜法進(jìn)行溶劑殘留測(cè)定,超臨界微粉化得到純度高、無(wú)毒無(wú)害的微粉化植物活性成分,溶劑殘留符合ICH規(guī)定的要求,表明這是一種“綠色環(huán)?!钡奈⒎刍夹g(shù)。

5 微粉化植物活性成分的特點(diǎn)

采用超臨界技術(shù)獲得的植物活性成分因其在粒徑、比表面積、晶體結(jié)構(gòu)、表面電位等方面發(fā)生改變,在溶解度、生物利用度和活性方面也發(fā)生相應(yīng)變化。①溶解度?;钚猿煞治⒎刍笠蚱淞浇档停缺砻娣e增加,可以提高其在生物體內(nèi)的溶出速率和溶解度。這對(duì)于活性成分在體內(nèi)快速起效是十分有利的。②生物利用度。采用超臨界流體技術(shù)制備的微粉化植物活性成分,以大鼠為受試模型動(dòng)物口服或注射給藥、眼球取血、高效液相色譜儀血藥濃度檢測(cè)。大多數(shù)文獻(xiàn)表明,其體內(nèi)生物利用度與原粉相比有大幅度的提高。③活性。當(dāng)植物活性成分顆粒達(dá)到納米級(jí)水平時(shí),隨著顆粒總表面的增加,與胃腸道液體的有效面積明顯增加,提高活性成分的溶出速率;在具有相同的藥物效果前提下,可以減少藥物用藥量,減輕或消除植物活性成分的毒副作用;植物活性成分具有顆粒小、比表面積大、表面反應(yīng)活性高、活動(dòng)中心多、吸附能力強(qiáng)等特性。

6 結(jié)論與展望

通過(guò)檢索、分析1993~2013年植物活性成分超臨界微粉化方面的文獻(xiàn),發(fā)現(xiàn)1993~2007年間相關(guān)研究報(bào)道較少;從2008年起,文獻(xiàn)數(shù)大幅上升,2011~2012年表現(xiàn)尤為活躍,表明植物活性成分的微粉化在學(xué)術(shù)界越來(lái)越受到重視;獲得的微粉化植物活性成分粒徑低于1 000 nm,占57%,表明超臨界微粉化技術(shù)如今達(dá)到一個(gè)較精細(xì)化的水平;采用廣義的SAS和RESS 2種工藝的比例分別為70.37%和29.63%,表明植物活性成分中能溶于超臨界二氧化碳的數(shù)量相對(duì)較少,絕大多數(shù)活性成分需采用SAS法微粉化;植物活性單體成分占79.63%,混合物后20.37%,混合物的比例達(dá)到一個(gè)較高的水平?;旌衔镏泻械某煞州^多,對(duì)粒徑和含量的控制相對(duì)困難。這也是該領(lǐng)域研究的一個(gè)難點(diǎn)。但是,目前的相關(guān)文獻(xiàn)絕大多數(shù)只限于研究階段,主要集中在試驗(yàn)過(guò)程的機(jī)制、過(guò)程中的影響因素及工藝的可行性,還不能完全的進(jìn)行工業(yè)化生產(chǎn)。試驗(yàn)階段的研究工作放大到工業(yè)應(yīng)用還有許多技術(shù)問(wèn)題需要解決。這一問(wèn)題也是超臨界流體微粉化使得植物活性成分達(dá)到工業(yè)化水平的關(guān)鍵所在。但是,從目前的研究進(jìn)展、可行性及表現(xiàn)的優(yōu)越性來(lái)看,超臨界技術(shù)在工業(yè)上實(shí)現(xiàn)植物活性分的微粉化具有廣闊的應(yīng)用前景。

參考文獻(xiàn)

[1]

RONG L.Water insoluble drug formulation[M].Boca Raton,F(xiàn)L:CRC Press,2008.

[2] REVERCHON E,DONSI G,GORGOGLIONE D.Salicylic acid solubilization in supercritical CO2 and its micronization by RESS[J].The Journal of Supercritical Fluids,1993,6:241-248.

[3] KSIBI H,SUBRA P,GARRABOS Y.Formation of fine powders of caffeine by RESS[J].Advanced Powder Technology,1995,6:25-33.

[4] MAGNAN C,BADENS E,COMMENGES N,et al.Soy lecithin micronization by precipitation with a compressed fluid antisolventinfluence of process parameters[J].The Journal of Supercritical Fluids,2000,19:69-77.

[5] TRKAND M,LIETZOW R.Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution[J].AAPS Pharm Sci Tech,2004,5:36-45.

[6] CHEN K,ZHANG X,PAN J,et al.Gas antisolvent precipitation of Ginkgo ginkgolides with supercritical CO2 [J].Powder Technology,2005,152:127-132.

[7] LIU X W,LI Z Y,HAN B,et al.Supercritical antisolvent precipitation of microparticles of quercetin[J].Chinese Journal of Chemical Engineering,2005,13:128-130.

[8] HE W Z,SUO Q L,HONG H,et al.Supercritical antisolvent micronization of natural carotene by the SEDS process through prefilming atomization[J].Industrial & Engineering Chemistry Research,2006,45:2108-2115.

[9] NIU F,ROBY K F,RAJEWSKI R A,et al.Subramaniam paclitaxel nanoparticles:Production using compressed CO2 as antisolvent:Characterization and animal model studies[J].Polymeric Drug Delivery II,2006,924:262-277.

[10] YILDIZ N,TUNA S,DKER O,et al.Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS) [J].The Journal of Supercritical Fluids,2007,41:440-451.

[11] CHINGUNPITAK J,PUTTIPIPATKHACHORN S,TOZUKA Y,et al.Micronization of dihydroartemisinin by rapid expansion of supercritical solutions[J].Drug Development and Industrial Pharmacy,2008,34:609-617.

[12] FRANCESCHI E,KUNITA M H,TRES M V,et al.Phase behavior and process parameters effects on the characteristics of precipitated theophylline using carbon dioxide as antisolvent[J].The Journal of Supercritical fluids,2008,44:8-20.

[13] HONG H,SUO Q,LI F,et al.Precipitation and characterization of chelerythrine microparticles by the supercritical antisolvent process[J].Chemical Engineering & Technology,2008,31:1051-1055.

[14] LEE L Y,WANG C H,SMITH K A.Supercritical antisolvent production of biodegradable microand nanoparticles for controlled delivery of paclitaxel[J].Journal of Controlled Release,2008,125:96-106.

[15] LI Y,YANG D J,CHEN S L,et al.Chan.Process parameters and morphology in puerarin,phospholipids and their complex microparticles generation by supercritical antisolvent precipitation[J].International Journal of Pharmaceutics,2008,359:35-45.

[16] MATTEA F,MARTIN A,COCERO M J.Coprecipitation of betacarotene and polyethylene glycol with compressed CO2 as an antisolvent:Effect of temperature and concentration[J].Ind Eng Chem Res,2008,47:3900-3906.

[17] PARKAND S J,YEO S D.Recrystallization of caffeine using gas antisolvent process[J].The Journal of Supercritical Fluids,2008,47:85-92.

[18] GADERMANN M,PRESTON T C,TROSTER C,et al.Characterization of palmitic and lauric acid aerosols from rapid expansion of supercritical CO2 solutions[J].Molecular Physics,2008,106:945-953.

[19] HE S,LEI Z,HUANG D,et al.Preparation of microparticles of SCFCO2 extraction of Salvia miltiorrhiza by RESS[J].China Journal of Chinese Materia Medica,2008,33:2064.

[20] SHEU S R,JANG M J,WANG C C.A Study of Manufacturing MicroNano Particles of Green Tea by Rapid Expansion of Supercritical Solutions Method[M].ASME,2007.

[21] SANE A,LIMTRAKUL J.Formation of retinyl palmitateloaded poly (llactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV) [J].The Journal of Supercritical Fluids,2009,51:230-237.

[22] CARDOSO M,ANTUNES S,VAN KEULEN F,et al.Supercritical antisolvent micronisation of synthetic alltransbetacarotene with tetrahydrofuran as solvent and carbon dioxide as antisolvent[J].Journal of Chemical Technology and Biotechnology,2009,84:215-222.

[23] JIN H,XIA F,JIANG C,et al.Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent[J].Chinese Journal of Chemical Engineering,2009,17:672-677.

[24] MATTEA F,MARTN,MATASGAGO A,et al.Supercritical antisolvent precipitation from an emulsion:βcarotene nanoparticle formation[J].The Journal of Supercritical Fluids,2009,51:238-247.

[25] HE S,ZHANG Z,XU F,et al.Micronization of magnolia bark extract with enhanced dissolution behavior by rapid expansion of supercritical solution[J].Chemical and Pharmaceutical Bulletin,2010,58:154-159.

[26] WEN Z,LIU B,ZHENG Z,et al.Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique[J].Chemical Engineering Research and Design,2010,88:1102-1107.

[27] WEN Z,YOU X K,LIU B,et al.Selfassembly of liposomes loading hinesol by rapid expansion from supercritical to surfactant solution[J].Chem Res Chin Univ,2010,26:617-621.

[28] ZHAO X,ZU Y,LI Q,et al.Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process[J].The Journal of Supercritical Fluids,2010,51:412-419.

[29] HE S,ZHOU B,ZHANG S,et al.Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions[J].J Microencapsul,2011,28:183-189.

[30] SANEAND A,LIMTRAKUL J.Coprecipitation of asiatic acid and poly (llactide) using rapid expansion of subcritical solutions into liquid solvents[J].Journal of Nanoparticle Research,2011,13:4001-4013.

[31] WEN Z,YOU X,LIU B,et al.Formation of atractylone liposomes by rapid expansion from supercritical to surfactant solution[J].AsiaPacific Journal of Chemical Engineering,2011,6:624-630.

[32] RODRIGUES M A,PADRELA L,GERALDES V,et al.Theophylline polymorphs by atomization of supercritical antisolvent induced suspensions[J].The Journal of Supercritical Fluids,2011,58:303-312.

[33] ROY C,VREL D,VEGAGONZ LEZ A,et al.Effect of CO2antisolvent techniques on size distribution and crystal lattice of theophylline[J].The Journal of Supercritical Fluids,2011,57:267-277.

[34] SHANMUGAM S,PARK J H,CHI S C,et al.Antitumor efficacy of solid dispersion of paclitaxel prepared by supercritical antisolvent process in human mammary tumor xenografts[J].International Journal of Pharmaceutics,2011,403:130-135.

[35] SHANMUGAM S,PARK J H,CHI S C,et al.Physicochemical stability,pharmacokinetic,and biodistribution evaluation of paclitaxel solid dispersion prepared using supercritical antisolvent process[J].Drug Dev Ind Pharm,2011,37:628-637.

[36] SOSA M,RODRGUEZROJO S,MATTEA F,et al.Green tea encapsulation by means of high pressure antisolvent coprecipitation[J].The Journal of Supercritical Fluids,2011,56:304-311.

[37] YANG L,HUANG J M,ZU Y G,et al.Preparation and radical scavenging activities of polymeric procyanidins nanoparticles by a supercritical antisolvent (SAS) process[J].Food Chem,2011,128:1152-1159.

[38] ZHAO C,WANG L,ZU Y,et al.Micronization of Ginkgo biloba extract using supercritical antisolvent process [J].Powder Technology,2011,209:73-80.

[39] ZHAO X,ZU Y,JIANG R,et al.Preparation and physicochemical properties of 10Hydroxycamptothecin (HCPT)nanoparticles by supercritical antisolvent (SAS)process[J].Int J Mol Sci,2011,12:2678-2691.

[40] ZU Y,ZHANG Q,ZHAO X,et al.Preparation and characterization of vitexin powder micronized by a supercritical antisolvent (SAS) process[J].Powder Technology,2012,228:47-55.

[41] ZU S,YANG L,HUANG J,et al.Micronization of taxifolin by supercritical antisolvent process and evaluation of radical scavenging activity[J].Int J Mol Sci,2012,13:8869-8881.

[42] ZHOU R,WANG F,GUO Z,et al.Preparation and characterization of resveratrol//hydroxyropylbetacyclodextrin inclusion complex using supercritical antisolvent technology[J].Journal of Food Process Engineering,2012,35:677-686.

[43] ZHAO X,CHEN X,ZU Y,et al.Recrystallization and micronization of taxol using the supercritical antisolvent (SAS)process[J].Ind Eng Chem Res,2012,51:9591-9597.

[44] ZHANG X,ZHAO X,ZU Y,et al.Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process[J].Int J Mol Sci,2012,13:12598-12607.

[45] YESILCELIKTASAND O,CETINUYANIKGIL E O.In vitro release kinetics of polycaprolactone encapsulated plant extract fabricated by supercritical antisolvent process and solvent evaporation method[J].J Supercrit Fluids,2012,62:219-225.

[46] WEBER BRUN G,MARTIN A,CASSEL E,et al.Crystallization of caffeine by supercritical antisolvent (SAS)process:analysis of process parameters and control of polymorphism[J].Cryst Growth Des,2012,12:1943-1951.

[47]VISENTIN A,RODRIGUEZROJO S,NAVARRETE A,et al.Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process[J].J Food Eng,2012,109:9-15.

[48] LU Q,ZHU M,ZU Y,et al.Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with nonnanoscale lignin[J].Food Chem,2012,135:63-66.

[49] LI Y,YANG D J,ZHOU W,et al.Recrystallization of puerarin using the supercritical fluid antisolvent process[J].Journal of Crystal Growth,2012,340:142-148.

[50] L I W,LIU G,LI L,et al.Effect of Process parameters on Coprecipitation of paclitaxel and poly(Llactic Acid) by supercritical antisolvent process[J].Chinese Journal of Chemical Engineering,2012,20:803-813.

[51] YU H,ZHAO X,ZU Y,et al.Preparation and characterization of micronized artemisinin via a rapid expansion of supercritical solutions (RESS) method[J].International Journal of Molecular Sciences,2012,13:5060-5073.

[52] SUANKAEW N,MATSUMURA Y,SARAMALA I,et al.LMenthol crystal micronized by rapid expansion of supercritical carbon dioxide[J].Journal of Industrial and Engineering Chemistry,2012,18:904-908.

[53] ZHANG J,HUANG Y,LIU D,et al.Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement[J].European Journal of Pharmaceutical Sciences,2013,48:740-747.

[54] NEROME H,MACHMUDAH S,F(xiàn)UKUZATO R,et al.Nanoparticle formation of lycopene/betacyclodextrin inclusion complex using supercritical antisolvent precipitation[J].J Supercrit Fluids,2013,83:97-103.

[55] LIU G,WANG H,JIANG Y.Recrystallization and micronization of camptothecin by the supercritical antisolvent process:Influence of solvents[J].Ind Eng Chem Res,2013,52:15049-15056.

猜你喜歡
混合物超臨界粒徑
多組分纖維混合物定量分析通用計(jì)算模型研制
正丁醇和松節(jié)油混合物對(duì)組織脫水不良的補(bǔ)救應(yīng)用
超臨界CO2在頁(yè)巖氣開(kāi)發(fā)中的應(yīng)用研究進(jìn)展
云南化工(2021年5期)2021-12-21 07:41:20
木屑粒徑對(duì)黑木耳栽培的影響試驗(yàn)*
基于近場(chǎng)散射的顆粒粒徑分布測(cè)量
600MW超臨界機(jī)組熱經(jīng)濟(jì)性定量分析
1200MW等級(jí)超超臨界機(jī)組可行性研究
Oslo結(jié)晶器晶體粒徑分布特征的CFD模擬
混合物按照歐盟CLP進(jìn)行分類標(biāo)簽
萃取精餾分離甲苯-正庚烷混合物的模擬研究
斗六市| 武宣县| 宣威市| 台北县| 英吉沙县| 双牌县| 威远县| 青浦区| 和政县| 纳雍县| 根河市| 荣昌县| 博客| 上杭县| 武胜县| 哈密市| 星子县| 高唐县| 佛冈县| 陆良县| 长白| 观塘区| 杨浦区| 台安县| 阿拉善左旗| 江川县| 泸溪县| 黎川县| 南阳市| 尼玛县| 张家界市| 监利县| 阳原县| 锦屏县| 克东县| 仲巴县| 菏泽市| 弥勒县| 安达市| 宁波市| 青田县|