国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

預(yù)處理對(duì)木質(zhì)纖維素生物質(zhì)細(xì)胞壁超微結(jié)構(gòu)的影響

2014-06-24 14:13:43吉喆凌喆張遜馬建峰許鳳
生物工程學(xué)報(bào) 2014年5期
關(guān)鍵詞:細(xì)胞壁木質(zhì)木質(zhì)素

吉喆,凌喆,張遜,馬建峰,許鳳

北京林業(yè)大學(xué)林木生物質(zhì)化學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100083

預(yù)處理對(duì)木質(zhì)纖維素生物質(zhì)細(xì)胞壁超微結(jié)構(gòu)的影響

吉喆,凌喆,張遜,馬建峰,許鳳

北京林業(yè)大學(xué)林木生物質(zhì)化學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100083

預(yù)處理是提高木質(zhì)纖維素生物質(zhì)向生物燃料轉(zhuǎn)化的有效途徑,但生物質(zhì)的天然抗降解屏障嚴(yán)重阻礙了這一轉(zhuǎn)化的進(jìn)行,因此全面了解預(yù)處理過程中植物細(xì)胞壁的微觀結(jié)構(gòu)及區(qū)域化學(xué)變化是實(shí)現(xiàn)農(nóng)林生物質(zhì)高效轉(zhuǎn)化的基礎(chǔ)。本文總結(jié)了多種預(yù)處理方法對(duì)植物細(xì)胞壁超微結(jié)構(gòu)影響的研究進(jìn)展,對(duì)生物質(zhì)科學(xué)研究可能有一定的促進(jìn)和指導(dǎo)作用。

生物質(zhì)預(yù)處理,組分分布,微觀結(jié)構(gòu),纖維素,半纖維素,木質(zhì)素,酶水解

木質(zhì)纖維素生物質(zhì) (Ligncocellulosic biomass) 資源豐富,具有可再生性。利用木質(zhì)纖維原料生產(chǎn)燃料乙醇等功能性產(chǎn)品,為人類降低對(duì)化石燃料的依賴、緩解全球氣候變暖提供了可能[1-2]。生物質(zhì)的轉(zhuǎn)化通常包括3個(gè)步驟:1) 生物質(zhì)預(yù)處理; 2) 纖維素和半纖維素水解為可發(fā)酵的單糖;3) 將單糖發(fā)酵為燃料乙醇。然而,當(dāng)前生物質(zhì)向燃料乙醇和化學(xué)品的轉(zhuǎn)化仍存在高成本、低效率等問題,其中原料預(yù)處理技術(shù)的不成熟成為了限制木質(zhì)纖維素生物質(zhì)高值化利用的瓶頸之一,這主要是由于植物纖維原料中組分分布不均一性和細(xì)胞壁的結(jié)構(gòu)復(fù)雜性,使生物質(zhì)難以被降解[2]。因此,從細(xì)胞及分子水平全面研究生物質(zhì)預(yù)處理機(jī)理,以及預(yù)處理過程中植物細(xì)胞壁的微觀結(jié)構(gòu)和區(qū)域化學(xué)變化是實(shí)現(xiàn)農(nóng)林生物質(zhì)高效轉(zhuǎn)化的有效途徑。本文總結(jié)了多種具有發(fā)展前景的預(yù)處理方法,從細(xì)胞水平就生物質(zhì)預(yù)處理如何引起生物質(zhì)主要組分在細(xì)胞壁不同微區(qū)的改變,如何破壞纖維素、半纖維素和木質(zhì)素之間的聯(lián)結(jié),從而提高后續(xù)酶水解糖化效率等問題進(jìn)行了總結(jié)歸納,以期為木質(zhì)纖維素生物質(zhì)轉(zhuǎn)化領(lǐng)域的科學(xué)研究提供一定的促進(jìn)和指導(dǎo)作用。

1 預(yù)處理的必要性

質(zhì)素相互交聯(lián)覆蓋于纖維素表面,形成致密的保護(hù)層,阻礙了酶對(duì)纖維素的可及性。如圖1所示,植物細(xì)胞壁由多層結(jié)構(gòu)組成,各壁層中組分分布差異較大,其中細(xì)胞角隅區(qū)域木質(zhì)素濃度最高,復(fù)合胞間層次之,次生壁層最低;而纖維素的分布情況與木質(zhì)素相反,次生壁層纖維素濃度最高,其次是復(fù)合胞間層,細(xì)胞角隅區(qū)域纖維素濃度最低[3-6]。植物細(xì)胞壁的結(jié)構(gòu)復(fù)雜性和組分分布不均一性構(gòu)成了生物質(zhì)轉(zhuǎn)化過程中的天然抗降解屏障,嚴(yán)重阻礙了木質(zhì)纖維素生物質(zhì)向燃料乙醇的生物轉(zhuǎn)化。

圖1 構(gòu)樹纖維細(xì)胞透射電鏡圖像和木質(zhì)素分布拉曼成像[3](A:用1%高錳酸鉀對(duì)構(gòu)樹超薄切片進(jìn)行染色,在透射電鏡圖像中可根據(jù)顏色深淺區(qū)分細(xì)胞壁的分層結(jié)構(gòu)及木質(zhì)化程度,細(xì)胞角隅區(qū)域和復(fù)合胞間層木質(zhì)化程度較次生壁高;B:構(gòu)樹纖維細(xì)胞壁中木質(zhì)素分布拉曼成像,細(xì)胞角隅區(qū)域和復(fù)合胞間層木質(zhì)素濃度較次生壁高;CC:細(xì)胞角隅區(qū)域;CML:復(fù)合胞間層;S:次生壁 (S1, S2, S3))Fig. 1 TEM micrograph of an ultrathin transverse section of Broussonetia papyrifera fiber cell wall[3]. The dense staining of the CC and CML indicates that both of them are strongly lignified. (A) CC, cell corner; CML, compound middle lamella; S1, outer secondary wall; S2, middle secondary wall; S3, inner secondary wall. (B) Raman image of lignin distribution in Broussonetia papyrifera cell wall.

木質(zhì)纖維原料主要包含纖維素、半纖維素、木質(zhì)素和少量的果膠。纖維素是由葡萄糖通過β-1,4 糖苷鍵聯(lián)結(jié)而成的線性高分子聚合物,常以聚集態(tài)存在構(gòu)成晶體結(jié)構(gòu);半纖維素與木

因此,生物質(zhì)進(jìn)行酶水解之前需要先進(jìn)行預(yù)處理,其目的是通過破壞植物細(xì)胞壁的原本結(jié)構(gòu),分離或脫除部分木質(zhì)素,降低纖維素結(jié)晶度,增加原料底物的孔隙率,從而提高酶對(duì)纖維素的可及性,以促進(jìn)纖維素和半纖維素向單糖的轉(zhuǎn)化[7]。一般來講,理想的預(yù)處理技術(shù)需要滿足以下幾點(diǎn):1) 避免碳水化合物的降解或損失;2) 提高多糖轉(zhuǎn)化率;3) 避免產(chǎn)生對(duì)后續(xù)酶水解及發(fā)酵過程起抑制作用的化合物;4) 避免使用對(duì)環(huán)境污染嚴(yán)重和反應(yīng)器材質(zhì)高要求的化學(xué)試劑;5) 性價(jià)比高[8]。目前使用較多的預(yù)處理方法包括物理法、化學(xué)法、物理-化學(xué)法、生物法[9-11]。

2 化學(xué)預(yù)處理

2.1 稀酸及熱水預(yù)處理

稀酸預(yù)處理一般是用濃度低于10%的硫酸、鹽酸、磷酸等催化劑處理生物質(zhì),通過脫除生物質(zhì)組分中的半纖維素和少量木質(zhì)素,以提高酶水解效率。而熱水預(yù)處理則是在不添加任何催化劑的情況下通過溶解生物質(zhì)組分中的半纖維素來增加纖維酶的可及性從而增加酶水解的效率。

Abud等[12]研究了稀H2SO4預(yù)處理甘蔗Sugarcane過程中纖維素微纖絲形態(tài)學(xué)的變化。原子力顯微鏡 (AFM) 成像結(jié)果表明,不同細(xì)胞區(qū)域纖維素微纖絲取向和木質(zhì)素濃度存在差異性,且稀酸預(yù)處理對(duì)纖維素微纖絲的影響呈不均一性??傃灾?,稀酸預(yù)處理后纖維素微纖絲排列方向未發(fā)生改變,但原有的纖維層狀結(jié)構(gòu)消失,細(xì)胞表面伴隨球狀顆粒的形成。部分研究發(fā)現(xiàn)當(dāng)處理溫度超過木質(zhì)素的玻璃態(tài)轉(zhuǎn)化溫度時(shí),木質(zhì)素由固態(tài)轉(zhuǎn)為熔融狀態(tài),進(jìn)而重聚縮合成為富含木質(zhì)素的球狀顆粒,附著于細(xì)胞表面[13-14]。然而,Hu 等[15]在稀酸處理?xiàng)钅綪opulus trichocarpa x deltoids綜纖維素的研究中證實(shí),這些球狀顆粒是由碳水化合物和木質(zhì)素降解產(chǎn)物共同組成的假木素 (Pesudolignin)。Donohoe等[16]進(jìn)一步研究了該球狀顆粒的形成機(jī)理,發(fā)現(xiàn)在稀酸預(yù)處理之后的玉米秸稈Corn stover和柳枝稷Switchgrass中,球狀顆粒主要聚集在胞間層、紋孔及細(xì)胞次生壁各個(gè)亞層之間,并通過紋孔區(qū)域被擠壓到細(xì)胞壁表面。Li等[17]研究發(fā)現(xiàn)假木素可能會(huì)與纖維素酶產(chǎn)生不可逆的非功能性吸附,降低纖維素酶的有效性,從而對(duì)后續(xù)酶水解產(chǎn)生抑制作用。這說明木質(zhì)素的脫除與重排對(duì)后續(xù)酶水解的影響同等重要。

在草類原料中,羥基肉桂酸(Hydroxycinnamic acids) 作為木質(zhì)素與半纖維素結(jié)合的交聯(lián)聚合物,使細(xì)胞壁的結(jié)構(gòu)更加致密牢固,加劇了酶對(duì)纖維素吸附的困難程度[18]。Belmokhtar等[19]研究了稀酸預(yù)處理對(duì)奇崗Miscanthus x giganteus細(xì)胞壁形態(tài)學(xué)和羥基肉桂酸分布的影響,結(jié)果表明稀酸預(yù)處理會(huì)使細(xì)胞壁發(fā)生輕微潤(rùn)脹,并脫除了絕大部分的羥基肉桂酸,但不同細(xì)胞組織各亞層之間其溶出速率存在較大差異。

稀酸及熱水預(yù)處理的作用主要是脫除半纖維素,而木聚糖作為半纖維素的重要組分之一,其相關(guān)研究備受關(guān)注。Brunecky等[20]利用免疫熒光標(biāo)記技術(shù) (Immunofluorescence labeling)研究了稀酸預(yù)處理前后玉米秸稈中木聚糖的分布規(guī)律變化,結(jié)果表明稀酸預(yù)處理過程中,莖部組織厚壁細(xì)胞次生壁中層 (S2) 的木聚糖含量快速下降,而細(xì)胞壁內(nèi)側(cè) (與細(xì)胞腔交界處)和胞間層木聚糖含量稍有上升,說明細(xì)胞內(nèi)的木聚糖在被完全溶解到溶液之前,在細(xì)胞內(nèi)發(fā)生了遷移,聚集在細(xì)胞邊緣 (圖2)。DeMartini等[21]研究了楊木在熱水預(yù)處理過程中半纖維素多糖溶出規(guī)律,結(jié)果顯示隨著處理強(qiáng)度的增強(qiáng),聚阿拉伯糖半乳糖和果膠率先溶出,其次是木聚糖及木葡聚糖,而木質(zhì)素最后溶出,這表明在楊木細(xì)胞壁中木素與碳水化物之間的鍵合緊密牢固,是引起生物質(zhì)抗降解的主要原因。

2.2 堿性預(yù)處理

堿性預(yù)處理的作用主要是打斷木質(zhì)素與半纖維素之間的鍵合,脫除大量木質(zhì)素與部分半纖維素以增加酶對(duì)纖維素的可及性,從而提高酶水解效率。其中氫氧化鈉 (NaOH) 和氨液預(yù)處理的應(yīng)用較為廣泛。

圖2 熱水預(yù)處理過程中玉米秸稈細(xì)胞壁中木聚糖分布免疫標(biāo)記 (LM11抗體) 熒光圖像[20](A:對(duì)照組;B:140 ℃預(yù)處理2 min樣品脫除約25%木聚糖;C:140℃預(yù)處理10 min樣品脫除約60%木聚糖;D:140 ℃預(yù)處理20 min樣品脫除約77%木聚糖;放大600倍) Fig. 2 Sections of cross sections stained with LM11 xylan antibody well as signal intensity surface maps of (A) native CS; (B) 140 ℃, 2 min (25% xylan removed); (C) 140 ℃, 10 min (60% xylan removed); (D) 140 ℃, 20 min (77% xylan removed) illustrate the progressive loss of xylan from the centre of the cell wall, and its retention in the middle lamella and lumen of the cells[20].

圖3 NaOH預(yù)處理過程中楊木纖維細(xì)胞壁木質(zhì)素分布拉曼成像比較 (A:對(duì)照組;B:20 min;C:60 min;D:90 min)Fig. 3 The Raman images of lignin distribution in poplar fiber walls during sodium hydroxide pretreatment at different residence times of 0 (A), 20 (B), 60 (C), and 90 min (D). The rapid loss of Raman intensity in the secondary cell wall along the increased residence time suggests a preferential removal of lignin from these regions.

Chu等[22]利用共聚焦拉曼顯微成像技術(shù)研究了NaOH 預(yù)處理前后芒草Miscanthus薄壁細(xì)胞壁中組分分布變化,發(fā)現(xiàn)對(duì)照組中纖維素與木質(zhì)素共存,并有木質(zhì)素-半纖維素復(fù)合體球狀結(jié)構(gòu)存在于細(xì)胞內(nèi)壁;經(jīng)NaOH預(yù)處理之后,木質(zhì)素優(yōu)先從細(xì)胞壁內(nèi)側(cè)脫除,而纖維素的晶型結(jié)構(gòu)未發(fā)生改變,細(xì)胞壁內(nèi)側(cè)球狀結(jié)構(gòu)仍然存在,但經(jīng)拉曼光譜分析證實(shí)其內(nèi)部包含部分蠟質(zhì)。筆者在對(duì)楊木進(jìn)行NaOH預(yù)處理時(shí),也同樣發(fā)現(xiàn)細(xì)胞次生壁優(yōu)先脫除木質(zhì)素(圖3),從形態(tài)學(xué)分析這可能是由于細(xì)胞腔的存在使溶液與細(xì)胞壁內(nèi)側(cè)接觸面積更大,更易滲透而導(dǎo)致的;從化學(xué)角度分析,細(xì)胞壁次生壁富含直線型S木質(zhì)素,在堿性條件下木質(zhì)素之間的β-O-4鍵更易發(fā)生斷裂從而被脫除[23]。

Rezende等[24]研究了NaOH預(yù)處理過程中甘蔗細(xì)胞壁的形態(tài)學(xué)變化,發(fā)現(xiàn)隨著處理?xiàng)l件的增強(qiáng),細(xì)胞壁中的大部分木質(zhì)素被脫除,從而暴露出更多的纖維,由于潤(rùn)脹作用部分纖維束發(fā)生彎曲,甚至被剝離。Ben Sghaier等[25]利用SEM及AFM在納米水平進(jìn)一步研究了NaOH預(yù)處理對(duì)龍舌蘭Agave americana L. 細(xì)胞壁微觀結(jié)構(gòu)的影響,SEM結(jié)果表明預(yù)處理之后,除了細(xì)胞壁中的木質(zhì)素被脫除,纖維束變得疏松被過分暴露之外,隨著處理強(qiáng)度的增加,還有部分薄壁細(xì)胞被脫除;AFM 研究也證實(shí)了預(yù)處理過程中細(xì)胞表面原有的層狀結(jié)構(gòu)被剝離,表面粗糙度降低,這很可能與木質(zhì)素和半纖維素的移除有關(guān)。在相關(guān)研究中,經(jīng)NaOH預(yù)處理后的生物質(zhì)原料,其酶水解效率均有顯著提高[26-28],這一結(jié)果可以通過以上細(xì)胞壁的微觀變化得以解釋。

Belmokhtar等[19]研究了液氨浸漬 (Soaking in aqueous ammonia, SAA) 預(yù)處理對(duì)奇崗節(jié)間組織的影響,發(fā)現(xiàn)預(yù)處理過程中,包裹在纖維素微纖絲外側(cè)的木質(zhì)素與半纖維素被疏松,纖維素之間的氫鍵被打斷,結(jié)晶度降低,從而導(dǎo)致奇崗表皮厚壁細(xì)胞、維管厚壁細(xì)胞和薄壁細(xì)胞發(fā)生了明顯潤(rùn)脹;另外還發(fā)現(xiàn)液氨脫木質(zhì)素作用主要發(fā)生在表皮厚壁細(xì)胞角隅區(qū)域,而阿魏酸與對(duì)香豆酸則在各類細(xì)胞的角隅區(qū)域均被脫除,說明液氨浸漬預(yù)處理過程中,同一原料不同細(xì)胞組織,以及同一細(xì)胞不同亞層之間組分的分離機(jī)制不同。然而,Donohoe 等[29]利用液氨浸漬預(yù)處理柳枝稷時(shí),發(fā)現(xiàn)木質(zhì)素從細(xì)胞各層被均勻脫除,不同細(xì)胞類型之間脫木素速率也無明顯差異。這說明同一預(yù)處理方法作用于不同原料時(shí),其反應(yīng)機(jī)理不同。

2.3 離子液體預(yù)處理

離子液體 (Ionic liquid, ILs) 被認(rèn)為是一種可回收利用的新型綠色介質(zhì)。它由有機(jī)陽離子和無機(jī)陰離子組成,不同種類的離子液體可以溶解纖維素、木質(zhì)素、甚至木質(zhì)纖維素生物質(zhì)。通過添加反相溶劑 (水、甲醇、乙醇等) 可再生出木質(zhì)纖維素生物質(zhì),經(jīng)再生后其纖維素結(jié)晶度明顯降低,比表面積增加,從而提高后續(xù)酶水解效率[30]。

離子液體帶有強(qiáng)電負(fù)性離子,能夠與纖維素大分子上的羥基形成氫鍵,從而破壞了纖維素分子間與分子內(nèi)的氫鍵作用,達(dá)到溶解潤(rùn)脹的效果。Lucas等[31]研究了室溫條件下離子液體(1-乙基-3-甲基咪唑醋酸鹽,EmimAc) 預(yù)處理?xiàng)钅?,發(fā)現(xiàn)預(yù)處理后纖維細(xì)胞壁次生壁區(qū)域向細(xì)胞腔方向發(fā)生選擇性潤(rùn)脹,纖維素未被溶解,但其晶型結(jié)構(gòu)消失;加反相溶劑水之后,纖維素被再生出來,其晶型結(jié)構(gòu)較對(duì)照組未發(fā)生明顯變化,但含量稍有損失,另外,纖維細(xì)胞次生壁區(qū)域體積較之前變小。這表明常溫下EmimAc預(yù)處理過程中楊木纖維細(xì)胞壁的潤(rùn)脹和去結(jié)晶作用均是可逆的。

Lee等[30]在相關(guān)研究中表明,EmimAc可有效溶解木質(zhì)素,而對(duì)纖維素的影響不大。然而,Singh 等[32]研究發(fā)現(xiàn),EmimAc 在加熱條件下可實(shí)現(xiàn)纖維素與木質(zhì)素的全溶,并檢測(cè)了EmimAc預(yù)處理過程中柳枝稷節(jié)間組織細(xì)胞壁的溶解過程:在預(yù)處理初期,維管束厚壁細(xì)胞和各類細(xì)胞的胞間層區(qū)域率先溶解,使細(xì)胞分離開來;隨著預(yù)處理時(shí)間的延長(zhǎng),可實(shí)現(xiàn)組分全溶。Sun等[33]也研究了EmimAc在加熱條件下預(yù)處理玉米秸稈時(shí),不同細(xì)胞組織發(fā)生的特異性變化,并解析了離子液體預(yù)處理過程中植物細(xì)胞壁的潤(rùn)脹、木質(zhì)素與纖維素溶解的協(xié)同關(guān)系。

傳統(tǒng)的離子液體對(duì)水分較為敏感,這就要求在進(jìn)行離子液體預(yù)處理之前必須對(duì)樣品進(jìn)行干燥,然而這一過程極大增加了生產(chǎn)成本。為了緩解這一問題,親水性離子液體的相關(guān)研究變得尤為重要[34]。近年來,Liu 等[35]合成了一系列新型的以膽堿為陽離子,氨基酸為陰離子的水溶性離子液體 ([Ch][AA])。與傳統(tǒng)的離子液體不同,該水溶性離子液體的主要作用是選擇性脫除木質(zhì)素,而非打破纖維素結(jié)晶結(jié)構(gòu)。Hou等[34]研究了[Ch][AA]離子液體對(duì)稻桿進(jìn)行預(yù)處理過程中,木質(zhì)素和半纖維素的溶解機(jī)制,發(fā)現(xiàn)維管束厚壁細(xì)胞胞間層區(qū)域的木質(zhì)素可被率先脫除,而富含纖維素的次生壁區(qū)域由于與離子液體交聯(lián)作用較小,導(dǎo)致木質(zhì)素不易被除去;另外,隨著木質(zhì)素的大量脫除,從而暴露出更多的纖維,這些微觀結(jié)構(gòu)的改變可有效提高后續(xù)酶水解效率。

2.4 有機(jī)溶劑預(yù)處理

有機(jī)溶劑預(yù)處理能有效脫除木質(zhì)纖維原料中的木質(zhì)素,常用的有機(jī)溶劑包括:甲醇、乙醇、乙二醇、丙酮等[36-40]。在部分研究中,通過加入無機(jī)酸催化劑,可有效提高半纖維素和木質(zhì)素的脫除速率[40-41]。

Hallac等[42]研究發(fā)現(xiàn),在用乙醇溶劑處理大葉醉魚草時(shí),細(xì)胞壁會(huì)發(fā)生形變,表面有裂痕出現(xiàn);同時(shí)胞間層區(qū)域的木質(zhì)素被選擇性脫除,而細(xì)胞壁中纖維素的結(jié)晶結(jié)構(gòu)未發(fā)生明顯變化。將預(yù)處理之后的樣品進(jìn)行酶水解,結(jié)果顯示纖維素向單糖的轉(zhuǎn)化率明顯提高。雖然該預(yù)處理方法可使樣品中的纖維素更易被降解,但該工藝成本及純組分的潛在價(jià)值高,故更適合用于生產(chǎn)高值化產(chǎn)品[2]。

3 物理-化學(xué)預(yù)處理

3.1 蒸汽爆破預(yù)處理

蒸汽爆破 (Steam explosion) 是對(duì)物料進(jìn)行化學(xué)分解和機(jī)械分裂雙重作用的過程,它可通過脫除部分半纖維素和木質(zhì)素,破壞兩者對(duì)纖維素的包覆作用,增加原料的孔隙率及比表面積,從而促進(jìn)后續(xù)纖維素酶水解作用的進(jìn)行。

Kristensen等[43]研究發(fā)現(xiàn),經(jīng)蒸汽爆破預(yù)處理后的麥秸節(jié)間組織,細(xì)胞壁中的纖維束相互分離松散,光滑的纖維表面有尺寸大小不均一的球狀沉淀物形成。根據(jù)前人研究,該球狀沉淀物的形成機(jī)理與在稀酸及熱水預(yù)處理中是類似的,很可能是木質(zhì)素在溫度高于其玻璃態(tài)轉(zhuǎn)化溫度時(shí)發(fā)生凝聚重排的結(jié)果[12-13,16]。

3.2 氨氣纖維爆破預(yù)處理

氨氣纖維爆破預(yù)處理是通過堿性氨分子與纖維素上的部分羥基形成絡(luò)合物,從而使纖維發(fā)生膨脹,而后快速降壓致使纖維結(jié)構(gòu)受到破壞的過程。該方法可有效降低纖維素的結(jié)晶度,并打斷木質(zhì)素與碳水化合物之間的鍵合,從而提高木質(zhì)纖維生物質(zhì)向單糖的轉(zhuǎn)化效率。

Donohoe等[29]發(fā)現(xiàn),氨氣纖維爆破預(yù)處理之后的柳枝稷節(jié)間組織,細(xì)胞壁變薄,并伴隨形變甚至塌陷;另外在細(xì)胞腔區(qū)域形成了不規(guī)則的富含木質(zhì)素的球狀沉淀物。Chundawat等[44]在氨氣纖維爆破預(yù)處理后的玉米秸稈表面,也發(fā)現(xiàn)了類似的球狀沉淀物,不同的是,他通過免疫熒光標(biāo)記技術(shù)證實(shí)了這些球狀物中富含聚阿拉伯糖木糖而非木質(zhì)素。

4 結(jié)論與展望

木質(zhì)素與半纖維素的包覆、纖維素的結(jié)晶度與聚合度、酶對(duì)纖維素的可及性,是影響木質(zhì)纖維素生物質(zhì)酶水解效率的主要因素。預(yù)處理技術(shù)是通過改變物料的物理或化學(xué)特性,從而克服生物質(zhì)的難降解性,提高生物質(zhì)轉(zhuǎn)化效率的關(guān)鍵步驟。全面了解預(yù)處理工藝是如何作用于植物細(xì)胞壁,改變其微觀結(jié)構(gòu)從而提高酶水解效率,是有效提高木質(zhì)纖維生物質(zhì)轉(zhuǎn)化的重要途徑。本文從細(xì)胞及分子水平分析總結(jié)了多種預(yù)處理方法對(duì)植物細(xì)胞壁區(qū)域化學(xué)和超微結(jié)構(gòu)的影響,為優(yōu)化預(yù)處理?xiàng)l件,降低經(jīng)濟(jì)成本,實(shí)現(xiàn)生物質(zhì)轉(zhuǎn)化工業(yè)化提供了可能。然而,由于不同木質(zhì)纖維素原料之間細(xì)胞類型與結(jié)構(gòu)不同,故其反應(yīng)性能也存在較大差異,因此在實(shí)際應(yīng)用中,對(duì)原料進(jìn)行預(yù)處理開發(fā)時(shí),應(yīng)從微觀與宏觀角度同時(shí)出發(fā),全面分析其反應(yīng)機(jī)理與最終得率,以期獲得最大的經(jīng)濟(jì)效益。

基于目前的檢測(cè)技術(shù),超微結(jié)構(gòu)分析主要是在微米水平揭示了預(yù)處理前后植物細(xì)胞壁結(jié)構(gòu)與化學(xué)組成發(fā)生的變化,而相關(guān)變化是否打開了酶分子的擴(kuò)散通道,提高了酶分子對(duì)不溶性底物的可及性,以及各種變化是如何影響酶對(duì)底物的可及性等問題仍然需要進(jìn)一步深入研究。為了使利用木質(zhì)生物資源生產(chǎn)乙醇進(jìn)入工業(yè)化,今后我們應(yīng)借助多種顯微技術(shù)力爭(zhēng)實(shí)現(xiàn)細(xì)胞壁變化的實(shí)時(shí)觀測(cè),建立有效的預(yù)處理模型,研究預(yù)處理機(jī)理,并且深入探索木質(zhì)纖維素物料化學(xué)組成與理化結(jié)構(gòu)的關(guān)系及其對(duì)纖維素酶消化的影響。突破木質(zhì)纖維素生物質(zhì)預(yù)處理的瓶頸問題,將為以木質(zhì)纖維素為原料的燃料乙醇工業(yè)化生產(chǎn)打下堅(jiān)實(shí)的基礎(chǔ)。

REFERENCES

[1] Holopainen-Mantila U, Marjamaa K, Merali Z, et al. Impact of hydrothermal pre-treatment to chemical composition, enzymatic digestibility and spatial distribution of cell wall polymers. Bioresour Technol, 2013, 138(1): 156–162.

[2] Chundawat SP, Beckham GT, Himmel ME, et al. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol, 2011, 2(1): 21–45.

[3] Zhang Z, Ji Z, Ma J, et al. Anatomy, cell wall ultrastructure and inhomogeneity in lignin distribution of broussonetia papyrifera. Cellul Chem Technol, 2012, 46(3/4): 157–164.

[4] Ma J, Ji Z, Zhou X, et al. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus a lba L. wood cell wall. Microsc Microanal, 2013, 19(1): 243–253.

[5] Agarwal UP. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta, 2006, 224(5): 1141–1153.

[6] Gierlinger N, Schwanninger M. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiology, 2006, 140(4): 1246–1254.

[7] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol, 2010, 101(13): 4851–4861.

[8] Zheng Y, Pan Z, Zhang R. Overview of biomass pretreatment for cellulosic ethanol production. Int J Agr Biol Eng, 2009, 2(3): 51–68.

[9] Panagiotou G, Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng, 2007, 96(2): 250–258.

[10] Oh SY, Yoo DI, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res, 2005, 340(15): 2376–2391.

[11] Kumar R, Mago G, Balan V, et al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol, 2009, 100(17): 3948–3962.

[12] Abud Y, Costa LT, de Souza W, et al. Revealing the microfibrillar arrangement of the cell wall surface and the macromolecular effects of thermochemical pretreatment in sugarcane by atomic force microscopy. Ind Crops Prod, 2013, 51(6): 2–9.

[13] Selig MJ, Viamajala S, Decker SR, et al. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Progr, 2007, 23(6): 1333–1339.

[14] Sannigrahi P, Kim DH, Jung S, et al. Pseudo-lignin and pretreatment chemistry. Energy Environ Sci, 2011, 4(4): 1306–1310.

[15] Hu F, Jung S, Ragauskas A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol, 2012, 117(1): 7–12.

[16] Donohoe BS, Decker SR, Tucker MP, et al. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng, 2008, 101(5): 913–925.

[17] Li H, Pu Y, Kumar R, et al. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng, 2013, 9(9): 1–8.

[18] Ralph J, Hatfield RD, Quideau S, et al. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc, 1994, 116(21): 9448–9456.

[19] Belmokhtar N, Habrant A, Ferreira NL, et al. Changes in phenolics distribution after chemical pretreatment and enzymatic conversion of miscanthus × giganteus internode. Bioenerg Res, 2013, 6(2): 506–518.

[20] Brunecky R, Vinzant TB, Porter SE, et al. Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnol Bioeng, 2009, 102(6): 1537–1543.

[21] DeMartini JD, Pattathil S, Avci U, et al. Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci, 2011, 4(10): 4332–4339.

[22] Chu LQ, Masyuko R, Sweedler JV, et al. Base-induced delignification of miscanthus x giganteus studied by three-dimensional confocal raman imaging. Bioresour Technol, 2010, 101(13): 4919–4925.

[23] Donaldson LA. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry, 2001, 57(6): 859–873.

[24] Rezende CA, de Lima MA, Maziero P, et al. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels, 2011, 4(1): 1–19.

[25] Ben Sghaier AE, Chaabouni Y, Msahli S, et al. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod, 2012, 36(1): 257–266.

[26] Persson T, Ren JL, Joelsson E, et al. Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresour Technol, 2009, 100(17): 3906–3913.

[27] Saha BC, Cotta MA. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Progr, 2006, 22(2): 449–453.

[28] Varga E, Szengyel Z, Réczey K. Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Appl Biochem Biotechnol, 2002, 98(1/9): 73–87.

[29] Donohoe BS, Vinzant TB, Elander RT, et al. Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresour Technol, 2011, 102(24): 11097–11104.

[30] Lee SH, Doherty TV, Linhardt RJ, et al. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng, 2009, 102(5): 1368–1376.

[31] Lucas M, Wagner GL, Nishiyama Y, et al. Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol, 2011, 102(6): 4518–4523.

[32] Singh S, Simmons BA, Vogel KP. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng, 2009, 104(1): 68–75.

[33] Sun L, Li C, Xue Z, et al. Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. RSC Advances, 2013, 3(6): 2017–2027.

[34] Hou XD, Li N, Zong MH. Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: Visualization of changes in composition and cell wall structure. Biotechnol Bioeng, 2013, 110(7): 1895–1902.

[35] Liu QP, Hou XD, Li N, et al. Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass. Green Chemistry, 2012, 14(2): 304–307.

[36] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol, 2002, 83(1): 1–11.

[37] Hsu TA. Pretreatment of biomass[C]//Proceedings of the Fuel and Energy Abstracts. Finland: Elsevier Science, 1997, 38(2): 103.

[38] Duff SJ, Murray WD. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol, 1996, 55(1): 1–33.

[39] Chang VS, Nagwani M, Kim CH, et al. Oxidative lime pretreatment of high-lignin biomass. Appl Biochem Biotechnol, 2001, 94(1): 1–28.

[40] Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol, 2009, 82(5): 815–827.

[41] Paszner L, Cho H. High efficiency conversion of lignocellulosics to sugars for liquid fuel production by the ACOS process. Energy Exploit Explor, 1988, 6(2): 39–60.

[42] Hallac BB, Ray M, Murphy RJ, et al. Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja dav idii and its enzymatic conversion to glucose. Biotechnol Bioeng, 2010, 107(5): 795–801.

[43] Kristensen JB, Thygesen LG, Felby C, et al. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels, 2008, 1(5): 1–9.

[44] Chundawat SP, Donohoe BS, da Costa Sousa L, et al. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci, 2011, 4(3): 973–984.

(本文責(zé)編 郝麗芳)

Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review

Zhe Ji, Zhe Ling, Xun Zhang, Jianfeng Ma, and Feng Xu
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China

Deconstruction of lignocellulosic plant cell walls to fermentable sugars by biochemical means is impeded by several poorly understood ultrastructural and chemical barriers. Pretreatment is an essential step by altering the morphological and compositional characteristics of biomass to enhance the sugar release during enzymatic hydrolysis. Therefore, getting insight into this field is necessary to improve the conversion of biomass into biofuels. In this review, we highlight our recent understanding on the impact of various promising pretreatments on biomass, with emphasis on the topochemical andultrastructural changes of plant cell walls that are related to the reduction of recalcitrance and the consequence of saccharification. It will lend support to the scientific research and development with respect to biomass conversion.

biomass pretreatment, compositional distribution, ultrastructure, cellulose, hemicelluloses, lignin, enzymatic hydrolysis

February 13, 2014; Accepted: April 9, 2014

Feng Xu. Tel: +86-10-62336387; E-mail: xfx315@bjfu.edu.cn

吉喆, 凌喆, 張遜, 等. 預(yù)處理對(duì)木質(zhì)纖維素生物質(zhì)細(xì)胞壁超微結(jié)構(gòu)的影響. 生物工程學(xué)報(bào), 2014, 30(5): 707?715.

Ji Z, Ling Z, Zhang X, et al. Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review. Chin J Biotech, 2014, 30(5): 707?715.

Supported by: National Science and Technology Program of the Twelfth Five-Year Plan Period (No. 2012BAD32B06), National Science Fund for Distinguished Young Scholars (No. 31225005), Chinese Ministry of Education (No. 113014A).

科技部十二五科技支撐計(jì)劃項(xiàng)目 (No. 2012BAD32B06),國家杰出青年科學(xué)基金 (No. 31225005),教育部科技計(jì)劃項(xiàng)目 (No. 113014A) 資助。

時(shí)間:2014-05-07 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/doi/10.13345/j.cjb.140078.html

猜你喜歡
細(xì)胞壁木質(zhì)木質(zhì)素
木質(zhì)素增強(qiáng)生物塑料的研究進(jìn)展
上海包裝(2019年8期)2019-11-11 12:16:14
木質(zhì)風(fēng)景畫
紅花醇提物特異性抑制釀酒酵母細(xì)胞壁合成研究
茄科尖孢鐮刀菌3 個(gè)?;图?xì)胞壁降解酶的比較
一種改性木質(zhì)素基分散劑及其制備工藝
天津造紙(2016年1期)2017-01-15 14:03:29
木質(zhì)燃料
木質(zhì)燃料
木質(zhì)燃料
一種新型酚化木質(zhì)素胺乳化劑的合成及其性能
ABS/木質(zhì)素復(fù)合材料動(dòng)態(tài)流變行為的研究
中國塑料(2014年4期)2014-10-17 03:00:45
泸州市| 淮滨县| 德昌县| 托克逊县| 昌平区| 承德市| 怀化市| 台安县| 东乌珠穆沁旗| 张家港市| 安溪县| 盐池县| 沈阳市| 文昌市| 彝良县| 西乌珠穆沁旗| 石首市| 本溪| 沂源县| 务川| 永德县| 元谋县| 田东县| 张掖市| 平定县| 广东省| 荣成市| 砀山县| 博客| 景洪市| 中江县| 新昌县| 屯门区| 巩义市| 临泽县| 宁国市| 浏阳市| 呼伦贝尔市| 松潘县| 陇南市| 共和县|