王瑋,馬麗,韓新方
(海南師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,海南海口571158
狄氏空間上的有界線性映射
王瑋,馬麗,韓新方*
(海南師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,海南海口571158
建立了非對(duì)稱狄氏型狄氏空間到其對(duì)稱型狄氏空間上的一種映射,證明了該映射及其擬映射都是有界的線性映射,并且給出了在此映射下狄氏空間中元素對(duì)應(yīng)關(guān)系和表達(dá)式.
對(duì)稱狄氏型;非對(duì)稱狄氏型;對(duì)應(yīng)關(guān)系;映射;有界線性映射
設(shè)(E,β(E))為一個(gè)可測(cè)空間,m是(E,β(E))上的δ-有限測(cè)度,以(,)來記L2(E,m)上的內(nèi)積.用(ε,D(ε))表示L2(E,m)的狄氏型,狄氏型的定義見文[1-3].若這個(gè)狄氏型滿足ε(u,v)=ε(v,u),?u,v∈D()
ε,則稱此狄氏型為對(duì)稱狄氏型.對(duì)稱狄氏型與非對(duì)稱狄氏型有很大的區(qū)別,如正則對(duì)稱狄氏型聯(lián)系著一個(gè)Hunt過程,而正則非對(duì)稱狄氏型則聯(lián)系著一對(duì)對(duì)偶的Hunt過程;對(duì)稱狄氏型有漂亮的Beurling-Deny分解和Lejan變換公式,非對(duì)稱狄氏型雖然也有Beurling-Deny分解,但要相對(duì)復(fù)雜一些,要用到S.P.V.可積來描述跳部分,而強(qiáng)局部部分分成兩塊,一塊滿足Lejan公式,另一塊不對(duì)應(yīng)著測(cè)度,只能通過算子來定義,此算子滿足一定的變換公式,詳細(xì)的結(jié)果見文[4].如果能在非對(duì)稱狄氏型和對(duì)稱狄氏型之間建立某種對(duì)應(yīng)關(guān)系,則研究非對(duì)稱狄氏型時(shí),可以借助于這種對(duì)應(yīng)關(guān)系,研究相應(yīng)的對(duì)稱狄氏型.基于這種考慮,本文針對(duì)非對(duì)稱狄氏型定義域中元素和其對(duì)稱型定義域中的元素之間的對(duì)應(yīng)關(guān)系作了一些探討.
文[5]中引理2.1用Riesz表示定理,得到了如下結(jié)果:設(shè),則存在唯一的,且對(duì)有
下證算子φ的有界性.對(duì)?f∈D()ε有
對(duì)任意的實(shí)數(shù)a,b,任意的f1,f2,g∈D()ε有
(3)對(duì)?f,g∈D()ε有
(4)由非對(duì)稱狄氏型的預(yù)解方程知:對(duì)任意的α,β>0有,Gαf-Gβf=(β-α)GαGβf=(β-α)GβGαf,所以對(duì)?g∈D()ε有
所以
[1]Fukushima M,Oshima Y,Takeda M.Dirichlet forms and symmetric Markov processes[M].(Second version),Walter de Gruyter,2011.
[2]馬志明.狄氏型(Dirichlet Form)簡(jiǎn)介[J].重慶師范學(xué)院學(xué)報(bào):自然科學(xué)版,2001,18(1):1-7.
[3]Ma Z M,Rockner M.Introduction to the theory of(nonsymmetric)Dirichlet form[M].Springer-Verlag,1992.
[4]Hu Z C,Ma Z M,Sun W.On representations of non-sym?metric Dirichlet forms[J].Potential Anal,2010,32:101-131.
[5]Chen C Z,Ma L,Sun W.Stochastic Calculus for Markov Processes Associated with Non-symmetric Dirichlet Forms [J].SCIENCE CHINA Mathematic,2012,55(11):2195-2203.
責(zé)任編輯:畢和平
The Bounded Linear Mappings on Dirichlet Space
WANG Wei,MA Li,HAN Xinfang*
(College of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China)
This paper constructs one relationship between the functions in the domain of non-symmetric Dirichlet form and its symmetric part and proves that the mapping-relationship has inverse mapping which are both linear bounded mapping on the Dirichlet space.
symmetric Dirichlet form;non-symmetric Dirichlet form;correspondence;the mapping;bounded linear map?ping
O 211.1
A
1674-4942(2014)04-0363-02
2014-07-05
國(guó)家自然科學(xué)基金(11201102,11361021,11326169);海南省自然科學(xué)基金(112002,113007)
*通訊作者