崔煜艷+馬天馳+馬秀麗+何平
【摘要】 目的:驗(yàn)證醫(yī)用不銹鋼316表面鉭沉積后生物相容性的變化。方法:在醫(yī)用不銹鋼316表面進(jìn)行鉭沉積,之后將大鼠骨髓基質(zhì)干細(xì)胞分別植入鉭沉積表面和316基底表面,分別進(jìn)行X射線衍射檢測(cè)材料表面鉭沉積量、兩種材料表面細(xì)胞形態(tài)觀測(cè)、細(xì)胞黏附率檢測(cè)、堿性磷酸酶活性檢測(cè)。結(jié)果:經(jīng)X射線衍射檢測(cè)鉭有效的沉積于醫(yī)用不銹鋼316表面;細(xì)胞于兩種材料表面生長(zhǎng)良好;24 h細(xì)胞黏附率鉭沉積表面高于316不銹鋼表面(P<0.05);經(jīng)過(guò)5 d連續(xù)細(xì)胞培養(yǎng),鉭沉積材料表面大鼠骨髓基質(zhì)干細(xì)胞的活性高于316不銹鋼材料表面(P<0.05)。結(jié)論:316醫(yī)用不銹鋼經(jīng)過(guò)鉭沉積后其表面生物相容性高于其本來(lái)材料。
【關(guān)鍵詞】 細(xì)胞; 生物材料; 生物相容性; 氣相沉積
醫(yī)用金屬材料,由于其優(yōu)良的物理化學(xué)性能和生物相容性而被廣泛的應(yīng)用于醫(yī)學(xué)臨床領(lǐng)域,尤以口腔和骨科為甚[1-3]。臨床上常用的醫(yī)用金屬材料為316鈷鉬合金、鈦合金、純鈦等。其中,由于316合金的價(jià)格低廉且易于加工而被廣泛的應(yīng)用。但近年來(lái)的研究發(fā)現(xiàn),與其他大部分醫(yī)用金屬一樣,316合金的生物相容性并非完美[4-5]。其應(yīng)用于臨床時(shí)會(huì)有部分組織排斥的現(xiàn)象出現(xiàn)?,F(xiàn)在對(duì)于生物相容性的研究,學(xué)者們發(fā)現(xiàn)金屬鉭具有幾乎近于完美的生物相容性,且將其應(yīng)用于臨床后發(fā)現(xiàn)其臨床效果極佳[6-7]。受限于鉭高昂的價(jià)格,鉭的臨床應(yīng)用增加了患者的負(fù)擔(dān)。在本研究中,擬以316金屬為基底,通過(guò)化學(xué)氣相沉積技術(shù)使金屬鉭在316金屬表面沉積,并對(duì)沉積鉭后的材料進(jìn)行生物相容性評(píng)價(jià),對(duì)其臨床應(yīng)用前景進(jìn)行評(píng)估。
1 材料與方法
1.1 材料制備 將直徑為1 cm、厚度為2 mm的圓形316不銹鋼片表面拋光,超聲波清洗,干燥后備用,將五氯化鉭置于陶瓷坩堝內(nèi),同處理后的316不銹鋼片分別置入化學(xué)氣相沉積機(jī)的反應(yīng)管內(nèi),載氣為氬氣,還原氣為氫氣,反應(yīng)溫度為800 ℃,沉積時(shí)間為2 h。將沉積后的材料取出后備用。
1.2 X射線衍射檢測(cè) 將經(jīng)過(guò)鉭沉積的金屬片放于掃描鏡的載物臺(tái)上,經(jīng)表面噴金后進(jìn)行X射線質(zhì)譜分析,已確定沉積層的物理成分。
1.3 骨髓基質(zhì)干細(xì)胞分離培養(yǎng) 將1只4周齡SD大鼠脫頸處死后,無(wú)菌取出雙側(cè)股骨,PBS沖洗,去除表面的多余組織,在無(wú)菌條件下,去除股骨兩端,用含20%FBS的DMEM培養(yǎng)基沖洗骨髓腔,將沖洗液收集,置于25 cm2培養(yǎng)瓶中,首次24 h換液,3~4 d傳代,擴(kuò)增細(xì)胞后備用。
1.4 細(xì)胞黏附實(shí)驗(yàn) 將兩種金屬片清洗干燥后備用,將培養(yǎng)瓶中的骨髓基質(zhì)干細(xì)胞消化、吹打、離心、重懸,調(diào)整細(xì)胞密度為1×104個(gè)/mL。
取次細(xì)胞懸浮液200 ?m分別植入兩種金屬表面,依靠表面張力使液體不外流,置于細(xì)胞培養(yǎng)箱中連續(xù)培養(yǎng)24 h后,PBS沖洗,將金屬片表面的細(xì)胞用0.25%的胰蛋白酶消化后,吹打下來(lái),進(jìn)行細(xì)胞計(jì)數(shù),分別計(jì)算兩組材料表面細(xì)胞24 h黏附率,并進(jìn)行統(tǒng)計(jì)學(xué)分析。
1.5 材料表面細(xì)胞形態(tài)學(xué)觀察和堿性磷酸酶活性檢測(cè) 將細(xì)胞分別接種于兩種材料表面,在培養(yǎng)的第3天,分別取出兩種材料,對(duì)材料表面的細(xì)胞進(jìn)行用PBS清洗,多聚甲醛固定,酒精梯度脫水干燥,在金相顯微鏡下觀察材料表面細(xì)胞生長(zhǎng)狀況,并照相記錄。在培養(yǎng)的第5天將兩種材料取出,PBS清洗,Trion100裂解細(xì)胞,將裂解液收集進(jìn)行堿性磷酸酶檢測(cè)(南京建成生物技術(shù)研究所堿性磷酸酶檢測(cè)試劑盒)。
1.6 統(tǒng)計(jì)學(xué)處理 采用SPSS 12.0統(tǒng)計(jì)學(xué)軟件分析,計(jì)量資料以(x±s)表示,比較采用配對(duì)t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 X射線衍射檢測(cè) 經(jīng)X射線衍射檢測(cè)316表面沉積物為鉭。
2.2 材料表面基質(zhì)干細(xì)胞形態(tài)學(xué)觀察 在兩種材料表面生長(zhǎng)的基質(zhì)干細(xì)胞為圓形、多角形或梭形,胞漿比例大,胞質(zhì)透明,胞核圓形,生長(zhǎng)狀態(tài)良好,見(jiàn)圖1。
2.3 細(xì)胞黏附實(shí)驗(yàn) 經(jīng)過(guò)24 h細(xì)胞黏附檢測(cè),鉭沉積材料表面的細(xì)胞黏附率為(93.34±1.72)%,316不銹鋼表面為(85.63±1.53)%,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
2.4 材料表面細(xì)胞堿性磷酸酶活性檢測(cè) 經(jīng)過(guò)5 d材料表面細(xì)胞培養(yǎng)后,經(jīng)堿性磷酸酶檢測(cè),鉭沉積材料表面的大鼠骨髓基質(zhì)干細(xì)胞的堿性磷酸酶活性為(115.32±3.27),316不銹鋼表面為(81.23±3.35),差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
3 討論
醫(yī)用金屬材料由于具有良好的物理學(xué)性質(zhì)且價(jià)格低廉,被廣泛的應(yīng)用于醫(yī)用材料領(lǐng)域,用來(lái)進(jìn)行硬組織缺損的修復(fù)、骨折的固位、關(guān)節(jié)的替代等[8-9]。但由于機(jī)體免疫系統(tǒng)的存在,對(duì)于金屬材料的植入難免會(huì)發(fā)生或多或少的免疫排斥反應(yīng),使材料在機(jī)體內(nèi)發(fā)生腐蝕或被吸收,使手術(shù)植入失敗[10-13]。近年來(lái),對(duì)于金屬材料的生物相容性研究成為生物學(xué)材料研究的熱點(diǎn)[14]。316醫(yī)用不銹鋼作為傳統(tǒng)的醫(yī)用材料具有優(yōu)良的生物學(xué)性能,但與金屬鉭相比,其生物相容性較差。金屬鉭是一種硬度較高、密度較大的金屬材料,其物理性能穩(wěn)定。在常溫下,對(duì)鹽酸、濃硝酸及“王水”都不反應(yīng),有金屬陶瓷之稱[15-16]。但是由于其價(jià)格昂貴,加工相對(duì)困難,而限制了其在臨床上的應(yīng)用。
本實(shí)驗(yàn)中,筆者通過(guò)化學(xué)氣相沉積技術(shù)是鉭沉積于316醫(yī)用不銹鋼表面,通過(guò)X射線衍射試驗(yàn)發(fā)現(xiàn)此沉積層鉭含量極高,且性質(zhì)穩(wěn)定。此項(xiàng)檢測(cè)的目的在于對(duì)不銹鋼表面的鉭沉積層質(zhì)量進(jìn)行評(píng)估,由于實(shí)驗(yàn)條件的限制和加工工藝的局限,鉭沉積層在基材表面的沉積是不均勻的,如果在生物實(shí)驗(yàn)前不進(jìn)行鉭含量檢測(cè),則無(wú)法保證316為鉭所有效覆蓋。經(jīng)過(guò)檢測(cè)筆者發(fā)現(xiàn)沉積層的成分為純鉭。由于鉭有效的覆蓋了316不銹鋼表面,使經(jīng)過(guò)鉭沉積后的316不銹鋼材料表面具有鉭的性能,這樣在不大幅提高材料成本的情況下理論上可以大幅提高材料的生物相容性性能。在實(shí)驗(yàn)中,為證實(shí)此種假設(shè),筆者對(duì)材料采用了細(xì)胞黏附率的檢測(cè)和堿性磷酸酶活性的檢測(cè)。由于材料植入體內(nèi)后,首先和細(xì)胞接觸,細(xì)胞和材料的早期接觸特性,即細(xì)胞的黏附率決定了材料的早期生物相容性,故對(duì)于黏附率的檢測(cè)來(lái)評(píng)價(jià)生物相容性是有著重要的意義。其次,由于金屬材料在臨床應(yīng)用中大部分被用于硬組織,所以,本實(shí)驗(yàn)檢測(cè)了堿性磷酸酶的活性,以此來(lái)評(píng)估材料的骨組織結(jié)合特性,為臨床應(yīng)用提供數(shù)據(jù)支持。通過(guò)這兩種生物學(xué)檢測(cè),筆者發(fā)現(xiàn)316不銹鋼表面經(jīng)過(guò)鉭沉積后,有效地提高了其生物學(xué)性能,進(jìn)而擁有廣闊的應(yīng)用前景。endprint
對(duì)于鉭在不銹鋼表面的沉積依然有許多問(wèn)題要解決。首先,對(duì)于抗磨性的研究,由于本實(shí)驗(yàn)條件所限并未涉及,但對(duì)于臨床上的關(guān)節(jié)替代研究領(lǐng)域、抗磨性的研究為一中重要研究領(lǐng)域。其次,對(duì)于鉭沉積厚度和沉積時(shí)間兩者相關(guān)性的研究也為鉭沉積材料臨床應(yīng)用研究的一個(gè)重要領(lǐng)域。
總之,由于鉭本身所具有的優(yōu)良的生物學(xué)性能,通過(guò)薄膜技術(shù)將其分布于各種基材表面進(jìn)而改變基材的生物學(xué)性能是大范圍提高臨床材料生物相容性的有效手段。
參考文獻(xiàn)
[1] Riccio V,Della R F,Marrone G,et al. Cultures of human embryonic osteoblasts. A new in vitro model for biocompatibility studies[J].Clin Orthop Relat Res,2004,308(23):73-78.
[2] Kapanen A,Ilvesaro J,Danilov A,et al.Behaviour of Nitinol in osteoblast-like ROS-17 cell cultures[J].Biomaterials,2012,23(1):645-650.
[3] Yeung K W,Poon R W,Liu X Y,et al.Investigation of nickel suppression and cytocompatibility of surface-treated nickel–titanium shape memory alloys by using plasma immersion ion implantation[J].J Biomed Mater Res A,2005,72(13):238-245.
[4] Wu S L,Chu P K,Liu X M,et al.Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasmaimplanted porous nickel titanium shape memory alloy[J].J Biomed Mater Res A,2006,73(15):139-146.
[5] Liu X M,Wu S L,Chan Y L,et al.Surface characteristics, biocompatibility, and mechanical properties of nickel–titanium plasmaimplanted with nitrogen at different implantation voltages[J].J Biomed Mater Res A,2007,74(5):469-478.
[6] Logan B E,Rabaey K.Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337(6095):686-690.
[7] Villano M,Aulenta F,Ciucci C,et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J].Bioresour Technol,2010,101(9):3085-3090.
[8] Enning D,Venzlaff H,Garrelfs J,et al.Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust[J].Environ Microbiol,2012,14(7):1772-1787.
[9] Venzlaff H,Enning D,Srinivasan J,et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J].Corros Sci,2013,66(10):88-96.
[10] Jiang Y,Su M,Zhang Y,et al.Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J].Int J Hydrogen Energy,2013,38(8):3497-3502.
[11] Zhang D,Zhu W,Tang C,et al. Bioreactor performance and methanogenic population dynamics in a low-temperature (5-18 ℃) anaerobic fixed-bed reactor[J].Bioresour Technol,2012,104(10):136-143.
[12] Swoboda J G,Campbell J,Meredith T C,et al.Wall teichoic acid function, biosynthesis, and inhibition[J].Chem Bio,2010,11(2):35-45.
[13] Cruz L F,Cobine P A, Fuente D L.Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility[J].Applied and Environmental Microbiology,2012,78(5):1321-1331.
[14]Goode C,Allen D G.Effect of calcium on moving-bed biofilm reactor biofilms[J].Water Environ Res,2011,83(12):220-232.
[15] Liu Y J,Sun D D.Calcium augmentation for enhanced denitrifying granulation in sequencing batch reactors[J].Process Biochem,2011,46(11):987-992.
[16] Hill B M,Smythe B W.Endospores of thermophilic bacteria in ingredient milk powders and their significance to the manufacture of sterilized milk products: an industrial perspective[J].Food Rev Int,2012,28(19):299-312.
(收稿日期:2014-03-22) (本文編輯:蔡元元)endprint
對(duì)于鉭在不銹鋼表面的沉積依然有許多問(wèn)題要解決。首先,對(duì)于抗磨性的研究,由于本實(shí)驗(yàn)條件所限并未涉及,但對(duì)于臨床上的關(guān)節(jié)替代研究領(lǐng)域、抗磨性的研究為一中重要研究領(lǐng)域。其次,對(duì)于鉭沉積厚度和沉積時(shí)間兩者相關(guān)性的研究也為鉭沉積材料臨床應(yīng)用研究的一個(gè)重要領(lǐng)域。
總之,由于鉭本身所具有的優(yōu)良的生物學(xué)性能,通過(guò)薄膜技術(shù)將其分布于各種基材表面進(jìn)而改變基材的生物學(xué)性能是大范圍提高臨床材料生物相容性的有效手段。
參考文獻(xiàn)
[1] Riccio V,Della R F,Marrone G,et al. Cultures of human embryonic osteoblasts. A new in vitro model for biocompatibility studies[J].Clin Orthop Relat Res,2004,308(23):73-78.
[2] Kapanen A,Ilvesaro J,Danilov A,et al.Behaviour of Nitinol in osteoblast-like ROS-17 cell cultures[J].Biomaterials,2012,23(1):645-650.
[3] Yeung K W,Poon R W,Liu X Y,et al.Investigation of nickel suppression and cytocompatibility of surface-treated nickel–titanium shape memory alloys by using plasma immersion ion implantation[J].J Biomed Mater Res A,2005,72(13):238-245.
[4] Wu S L,Chu P K,Liu X M,et al.Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasmaimplanted porous nickel titanium shape memory alloy[J].J Biomed Mater Res A,2006,73(15):139-146.
[5] Liu X M,Wu S L,Chan Y L,et al.Surface characteristics, biocompatibility, and mechanical properties of nickel–titanium plasmaimplanted with nitrogen at different implantation voltages[J].J Biomed Mater Res A,2007,74(5):469-478.
[6] Logan B E,Rabaey K.Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337(6095):686-690.
[7] Villano M,Aulenta F,Ciucci C,et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J].Bioresour Technol,2010,101(9):3085-3090.
[8] Enning D,Venzlaff H,Garrelfs J,et al.Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust[J].Environ Microbiol,2012,14(7):1772-1787.
[9] Venzlaff H,Enning D,Srinivasan J,et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J].Corros Sci,2013,66(10):88-96.
[10] Jiang Y,Su M,Zhang Y,et al.Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J].Int J Hydrogen Energy,2013,38(8):3497-3502.
[11] Zhang D,Zhu W,Tang C,et al. Bioreactor performance and methanogenic population dynamics in a low-temperature (5-18 ℃) anaerobic fixed-bed reactor[J].Bioresour Technol,2012,104(10):136-143.
[12] Swoboda J G,Campbell J,Meredith T C,et al.Wall teichoic acid function, biosynthesis, and inhibition[J].Chem Bio,2010,11(2):35-45.
[13] Cruz L F,Cobine P A, Fuente D L.Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility[J].Applied and Environmental Microbiology,2012,78(5):1321-1331.
[14]Goode C,Allen D G.Effect of calcium on moving-bed biofilm reactor biofilms[J].Water Environ Res,2011,83(12):220-232.
[15] Liu Y J,Sun D D.Calcium augmentation for enhanced denitrifying granulation in sequencing batch reactors[J].Process Biochem,2011,46(11):987-992.
[16] Hill B M,Smythe B W.Endospores of thermophilic bacteria in ingredient milk powders and their significance to the manufacture of sterilized milk products: an industrial perspective[J].Food Rev Int,2012,28(19):299-312.
(收稿日期:2014-03-22) (本文編輯:蔡元元)endprint
對(duì)于鉭在不銹鋼表面的沉積依然有許多問(wèn)題要解決。首先,對(duì)于抗磨性的研究,由于本實(shí)驗(yàn)條件所限并未涉及,但對(duì)于臨床上的關(guān)節(jié)替代研究領(lǐng)域、抗磨性的研究為一中重要研究領(lǐng)域。其次,對(duì)于鉭沉積厚度和沉積時(shí)間兩者相關(guān)性的研究也為鉭沉積材料臨床應(yīng)用研究的一個(gè)重要領(lǐng)域。
總之,由于鉭本身所具有的優(yōu)良的生物學(xué)性能,通過(guò)薄膜技術(shù)將其分布于各種基材表面進(jìn)而改變基材的生物學(xué)性能是大范圍提高臨床材料生物相容性的有效手段。
參考文獻(xiàn)
[1] Riccio V,Della R F,Marrone G,et al. Cultures of human embryonic osteoblasts. A new in vitro model for biocompatibility studies[J].Clin Orthop Relat Res,2004,308(23):73-78.
[2] Kapanen A,Ilvesaro J,Danilov A,et al.Behaviour of Nitinol in osteoblast-like ROS-17 cell cultures[J].Biomaterials,2012,23(1):645-650.
[3] Yeung K W,Poon R W,Liu X Y,et al.Investigation of nickel suppression and cytocompatibility of surface-treated nickel–titanium shape memory alloys by using plasma immersion ion implantation[J].J Biomed Mater Res A,2005,72(13):238-245.
[4] Wu S L,Chu P K,Liu X M,et al.Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasmaimplanted porous nickel titanium shape memory alloy[J].J Biomed Mater Res A,2006,73(15):139-146.
[5] Liu X M,Wu S L,Chan Y L,et al.Surface characteristics, biocompatibility, and mechanical properties of nickel–titanium plasmaimplanted with nitrogen at different implantation voltages[J].J Biomed Mater Res A,2007,74(5):469-478.
[6] Logan B E,Rabaey K.Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science,2012,337(6095):686-690.
[7] Villano M,Aulenta F,Ciucci C,et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J].Bioresour Technol,2010,101(9):3085-3090.
[8] Enning D,Venzlaff H,Garrelfs J,et al.Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust[J].Environ Microbiol,2012,14(7):1772-1787.
[9] Venzlaff H,Enning D,Srinivasan J,et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J].Corros Sci,2013,66(10):88-96.
[10] Jiang Y,Su M,Zhang Y,et al.Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J].Int J Hydrogen Energy,2013,38(8):3497-3502.
[11] Zhang D,Zhu W,Tang C,et al. Bioreactor performance and methanogenic population dynamics in a low-temperature (5-18 ℃) anaerobic fixed-bed reactor[J].Bioresour Technol,2012,104(10):136-143.
[12] Swoboda J G,Campbell J,Meredith T C,et al.Wall teichoic acid function, biosynthesis, and inhibition[J].Chem Bio,2010,11(2):35-45.
[13] Cruz L F,Cobine P A, Fuente D L.Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility[J].Applied and Environmental Microbiology,2012,78(5):1321-1331.
[14]Goode C,Allen D G.Effect of calcium on moving-bed biofilm reactor biofilms[J].Water Environ Res,2011,83(12):220-232.
[15] Liu Y J,Sun D D.Calcium augmentation for enhanced denitrifying granulation in sequencing batch reactors[J].Process Biochem,2011,46(11):987-992.
[16] Hill B M,Smythe B W.Endospores of thermophilic bacteria in ingredient milk powders and their significance to the manufacture of sterilized milk products: an industrial perspective[J].Food Rev Int,2012,28(19):299-312.
(收稿日期:2014-03-22) (本文編輯:蔡元元)endprint