国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類Cohen-Grossberg型神經(jīng)網(wǎng)絡(luò)概周期解的全局指數(shù)穩(wěn)定

2014-07-12 14:38張強(qiáng)蓋明久張寧崔世維
關(guān)鍵詞:時(shí)滯全局神經(jīng)元

張強(qiáng),蓋明久,張寧,崔世維

(海軍航空工程學(xué)院a.基礎(chǔ)部;b.訓(xùn)練部;c.研究生管理大隊(duì),山東煙臺264001)

一類Cohen-Grossberg型神經(jīng)網(wǎng)絡(luò)概周期解的全局指數(shù)穩(wěn)定

張強(qiáng)a,蓋明久a,張寧b,崔世維c

(海軍航空工程學(xué)院a.基礎(chǔ)部;b.訓(xùn)練部;c.研究生管理大隊(duì),山東煙臺264001)

研究了一類Cohen-Grossberg型神經(jīng)網(wǎng)絡(luò)概周期解的存在唯一性及全局指數(shù)穩(wěn)定性,得到了判斷概周期解存在唯一及全局指數(shù)穩(wěn)定的充分條件,推廣了一些已有的結(jié)論。

Cohen-Grossberg型神經(jīng)網(wǎng)絡(luò);概周期解;穩(wěn)定性

與周期現(xiàn)象相比,概周期現(xiàn)象是一種更普遍的現(xiàn)象。事實(shí)上,從物理實(shí)現(xiàn)方面看,神經(jīng)網(wǎng)絡(luò)是由超大規(guī)模集成電路實(shí)現(xiàn)的,它擁有大量的神經(jīng)元,且每個(gè)神經(jīng)元都有自己的信號衰減系數(shù)、與其他神經(jīng)元的連接權(quán)系數(shù)以及外部輸入,因而很難做到它們都具有相同的周期。同時(shí),由于神經(jīng)網(wǎng)絡(luò)電路的外部輸入是由市電供應(yīng)的,而電力系統(tǒng)本身就存在概周期現(xiàn)象,這樣就使得神經(jīng)網(wǎng)絡(luò)的信號衰減系數(shù)、連接權(quán)系數(shù)以及外部輸入可能具有概周期振蕩行為。因此,研究神經(jīng)網(wǎng)絡(luò)的性質(zhì)時(shí)就有必要研究這種概周期振蕩現(xiàn)象。

關(guān)于Hopfield神經(jīng)網(wǎng)絡(luò)、細(xì)胞神經(jīng)網(wǎng)絡(luò)、BAM神經(jīng)網(wǎng)絡(luò)概周期解的存在性及穩(wěn)定性,許多學(xué)者進(jìn)行了深入的研究[1-9]。同時(shí),由于Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)在模式識別、圖像處理等方面的成功運(yùn)用,關(guān)于這類網(wǎng)絡(luò)的概周期解的研究引起了國內(nèi)外學(xué)者的廣泛關(guān)注,并取得了一些很好的研究成果[10-12]。在文獻(xiàn)[13]中,Chen研究了Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)

概周期解的存在性及全局指數(shù)穩(wěn)定性。本文將系統(tǒng)中的常時(shí)滯推廣為變時(shí)滯,并同時(shí)考慮分布時(shí)滯存在的情況下,研究如下一類Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)概周期解的存在性及全局指數(shù)穩(wěn)定性:

式(2)中:i=1,2,…,n,n≥2是網(wǎng)絡(luò)中神經(jīng)元的數(shù)量;xi(t)表示第i個(gè)神經(jīng)元在t時(shí)刻的狀態(tài);fj(·)、gj(·)、hj(·)是激勵(lì)函數(shù);0〈τij(t)〈τij對應(yīng)于軸突信號傳輸時(shí)滯;cij(t)、dij(t)、eij(t)是t時(shí)刻的連接權(quán)重;Kij(t)是時(shí)滯核;Ii(t)表示在t時(shí)刻的外部輸入。

系統(tǒng)的初始條件為

1 預(yù)備工作

定義1:概周期函數(shù)。設(shè)x(t):?→?,若?ε〉0,?l=l(ε)〉0,使在任意長為l的區(qū)間內(nèi)都存在δ,使|x(t+δ)-x(t)|〈ε對任意t∈?都成立,則稱x(t)是一個(gè)概周期函數(shù)。

下面總是假設(shè)i,j=1,2,…,n。關(guān)于系統(tǒng),作如下假設(shè):

(H1)存在正常數(shù)、,使得0〈ai(t,x)≤,

(H2)存在常數(shù)使

(H3)函數(shù)fj(·)、gj(·)、hj(·)有界并且滿足Lipschitz條件,即存在常數(shù),使得?x,y∈?,有

2 主要結(jié)果

定理1:假設(shè)(H1)~(H5)成立,并且有

則系統(tǒng)(2)存在唯一概周期解,并且是全局指數(shù)穩(wěn)定的。

證明:對任意的φ∈X,考慮如下輔助線性系統(tǒng):

由常數(shù)變易法,可得方程的解為:

定義映射

?φ∈X。令:

令:

則X*是X的一個(gè)閉凸子集。

注意到

因此,對任意的φ∈X*,有

當(dāng)φi(u)〉0時(shí),由假設(shè)(H2)可得

此時(shí)有

當(dāng)φi(u)〈0時(shí),由類似的推導(dǎo)可得

綜合式(5)、(6),可以得到

將式(7)代入式(4),有

因此,Tφ∈X*,故T是X*到X*的自映射。接下來證明T是X*到X*的壓縮映射。

事實(shí)上,對任意φ,ψ∈X*,采用與上面類似的推導(dǎo)過程,可得

因?yàn)棣选?,所以T是X*到X*的壓縮映射。

由Banach壓縮映射不動點(diǎn)定理知,T在X*上有唯一的不動點(diǎn)φˉ,使得Tφˉ=φˉ。由系統(tǒng)的形式可知,系統(tǒng)在X*上存在唯一概周期解x*=φˉ。

接下來證明x*的全局指數(shù)穩(wěn)定性。

則0〈Ai(0)≤ρ〈1。由Ai(ε)的連續(xù)性可知,存在λi〉0,使得0〈Ai(λi)〈1。取λ=1m≤ii≤nn{λi},則有

設(shè)x(t)是系統(tǒng)(2)的任意一個(gè)解,x*(t)是其概周期解,其初始條件分別為

首先證明對任意的α〉1,有下式成立:

當(dāng)t=0時(shí),式(9)顯然成立。

假設(shè)當(dāng)t〉0時(shí)式(9)不成立,那么存在t1〉0和i∈{1,2,…,n},使得|,且

注意到,

對上述系統(tǒng)利用常數(shù)變易法,并由假設(shè)(H1)~(H5)和式(7),有

這與假設(shè)矛盾,故式(9)成立。令α→1,則有式(8)成立,從而系統(tǒng)的概周期解是全局指數(shù)穩(wěn)定的。

注:若eij(t)≡0,τij(t)=τj,gj=fj,則系統(tǒng)就是文獻(xiàn)[13]中所研究的系統(tǒng),此時(shí)文獻(xiàn)[13]中的定理1就是本文定理的一個(gè)推論。

另外,在文獻(xiàn)[13]中,為保證其概周期解的全局指數(shù)穩(wěn)定性,在其定理2中需要加入條件:

[1] LIU BINGWEN,HUANG LIHONG.Existence and exponential stabilityof almost periodic solutions for Hopfield neural networks with delays[J].Neurocomputing,2005,68:196-207.

[2]LIU BINGWEN.A lmost periodic solutions for Hopfield neural networks with continuously distributed delays[J]. Mathematics and Computers in Simulation,2007,73:327-335.

[3] LIU BINGWEN,HUANG LIHONG.Existence and exponential stability of almost periodic solutions for cellular neural networks with m ixed delays[J].Chaos,Solitons and Fractals,2007,32:95-103.

[4] BAI CHUANZHI.Global stability of almost periodic solutions of Hopfield neural networks with neutral timevarying delays[J].Applied Mathematics and Computation,2008,203:72-79.

[5] XIANG HONGJUN,CAO JINDE.Almost periodic solutions of recurrent neural networks with continuously distributed delays[J].Nonlinear Analysis,2009,71:6097-6108.

[6] XIA YONGHUI,CAO JINDE,LIN MUREN.New results on the existence and uniqueness of almost periodic solution for BAMneural networks with continuously distributed delays[J].Chaos,Solitons and Fractals,2007,31:928-936.

[7] ZHANG HUIYING,XIA YONGHUI.Existence and exponential stability of almost periodic solution for Hopfield-type neural networks with impulse[J].Chaos,Solitons and Fractals,2008,37:1076-1082.

[8] XIAO BING,MENG HUA.Existence and exponential stability of positive almost periodic solutions for high-order Hopfield neural networks[J].Applied Mathematical Modelling,2009,33:532-542.

[9] CHEN ANPING,CAO JINDE.Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients[J].Applied Mathematics and Computation,2003,134:125-140.

[10] XIANG HONGJUN,CAO JINDE.A lmost periodic solution of Cohen-Grossberg neural networks with bounded and unbounded delays[J].Nonlinear Analysis:Real World Applications,2009,10:2407-2419.

[11] ZHAO HONGYONG,CHEN LING,MAO ZISEN.Existence and stability of almost periodic solution for Cohen-Grossberg neural networks with variable coefficients[J]. Nonlinear Analysis:Real World Applications,2008,9:663-673.

[12] LI YONGKUN,F(xiàn)AN XUANLONG.Existence and globally exponential stability of almost periodic solution for Cohen-Grossberg BAMneural networks with variable coefficients[J].Applied Mathematical Modelling,2009,33:2114-2120.

[13] CHEN ZHANG,ZHAO DONGHUA,RUAN JIONG.Almost periodic attracor fof Cohen-Grossberg neural networks with delay[J].Physics Letters A,2009,373:434-440.

Almost Periodic Solutions Global Exponential Stability of Cohen-Grossberg Neural Networks

ZHANG Qianga,GAI Ming-jiua,ZHANG Ningb,CUI Shi-weic
(Naval Aeronautical and Astronautical University a.Department of Basic Sciences; b.Department of Training;c.Graduate students'Brigade,Yantai Shandong 264001,China)

In this paper,the existence,uniqueness and global exponential stability of the almost periodic solution for a class of Cohen-Grossberg neural networks were studied,and the sufficient conditions for it's global exponential stability of the unique almost periodic solution was given.The results improvet some present conclusions.

Cohen-Grossberg neural networks;almost periodic solution;stability

TP183;O175

A

1673-1522(2014)04-0374-05

10.7682/j.issn.1673-1522.2014.04.016

2014-03-05;

2014-04-22

張強(qiáng)(1980-),男,講師,碩士。

猜你喜歡
時(shí)滯全局神經(jīng)元
基于改進(jìn)空間通道信息的全局煙霧注意網(wǎng)絡(luò)
隨機(jī)時(shí)滯微分方程的數(shù)值算法實(shí)現(xiàn)
AI講座:神經(jīng)網(wǎng)絡(luò)的空間對應(yīng)
變時(shí)滯間隙非線性機(jī)翼顫振主動控制方法
不確定時(shí)滯奇異攝動系統(tǒng)的最優(yōu)故障估計(jì)
采用GCaMP6 在體大規(guī)模記錄感覺神經(jīng)元的活動
落子山東,意在全局
中立型隨機(jī)時(shí)滯微分方程的離散反饋鎮(zhèn)定
記憶型非經(jīng)典擴(kuò)散方程在中的全局吸引子
高超聲速飛行器全局有限時(shí)間姿態(tài)控制方法
南汇区| 吉水县| 阳春市| 合阳县| 大埔区| 揭西县| 双辽市| 罗田县| 景洪市| 清苑县| 定南县| 定襄县| 五指山市| 广河县| 房山区| 海林市| 高青县| 炎陵县| 商水县| 常德市| 南陵县| 肥乡县| 白水县| 长垣县| 新津县| 武义县| 湘西| 南阳市| 玛沁县| 鄱阳县| 乌兰浩特市| 淅川县| 贡山| 白城市| 桂平市| 静宁县| 库伦旗| 固镇县| 阳城县| 本溪| 隆子县|