孟慧 賈慧娟
摘 要: 離散數(shù)學(xué)是計算機專業(yè)的重要基礎(chǔ)理論課之一,對計算機的發(fā)展、計算機科學(xué)的研究起著重大的作用,其思想、方法、概念已滲透到計算機學(xué)科的各個領(lǐng)域,為數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)庫原理、操作系統(tǒng)、算法分析、邏輯設(shè)計、系統(tǒng)結(jié)構(gòu)等后繼課程的重要理論基礎(chǔ)。本文針對離散數(shù)學(xué)的自身特點和存在問題,對教學(xué)方法進行深入探討,改進教學(xué)方法及教學(xué)手段,使計算機專業(yè)中的離散數(shù)學(xué)教學(xué)質(zhì)量得到不斷提高。
關(guān)鍵詞: 離散數(shù)學(xué) 計算機科學(xué)與技術(shù)專業(yè) 教學(xué)方法
離散數(shù)學(xué)是現(xiàn)代數(shù)學(xué)的一個重要分支,主要研究離散量的結(jié)構(gòu)及其相互關(guān)系,是計算機專業(yè)的核心基礎(chǔ)課程。它作為有力的數(shù)學(xué)工具,對計算機的發(fā)展、計算機科學(xué)的研究起著重大作用,其思想、方法、概念已滲透到計算機學(xué)科的各個領(lǐng)域,為數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)庫原理、操作系統(tǒng)、算法分析、邏輯設(shè)計、系統(tǒng)結(jié)構(gòu)等后繼課程的重要理論基礎(chǔ)。
一、課程特點
離散數(shù)學(xué)的主要特點有:內(nèi)容零散、定義和定理多。離散數(shù)學(xué)的教學(xué)內(nèi)容主要包括命題邏輯、集合論、代數(shù)系統(tǒng)和圖論[1]-[2]。這四個部分自成體系,聯(lián)系并不緊密。如果其中某部分沒有學(xué)好,對其他部分影響不大,但是不能通過某部分學(xué)習(xí)間接理解其他部分。每個內(nèi)容都包含繁多又抽象的定義和定理,使得離散數(shù)學(xué)內(nèi)容零散、枯燥,不容易形成一個有機整體。
二、現(xiàn)狀及存在問題
離散數(shù)學(xué)是計算機專業(yè)的核心基礎(chǔ)課程,主要研究離散量的結(jié)構(gòu)及相互關(guān)系。對培養(yǎng)學(xué)生的學(xué)科素質(zhì)、掌握正確的學(xué)科方法起著重要作用。目前離散數(shù)學(xué)課程在教學(xué)手段及方法、內(nèi)容設(shè)置、學(xué)時安排、學(xué)生考核等方面都存在一些問題。
(一)教學(xué)模式單一,缺乏多樣性。通常教學(xué)中表現(xiàn)出以定義、定理、算法、推理與證明方法的介紹為主,缺乏對知識應(yīng)用的講解,從而導(dǎo)致離散數(shù)學(xué)學(xué)習(xí)枯燥無味,抑制學(xué)生的學(xué)習(xí)興趣。筆者通過對學(xué)生的調(diào)研發(fā)現(xiàn),學(xué)生在學(xué)習(xí)過程中對為什么學(xué)及學(xué)了有什么用很茫然,往往認為離散數(shù)學(xué)沒有實用價值,更沒有體會到離散數(shù)學(xué)對培養(yǎng)思維能力的重要性。他們認為離散數(shù)學(xué)等一些理論基礎(chǔ)課對考研及繼續(xù)深造沒什么幫助,對就業(yè)也沒多大價值。學(xué)生的這些認識誤區(qū)導(dǎo)致對離散數(shù)學(xué)不夠重視,學(xué)習(xí)積極性不高。
(二)教學(xué)學(xué)時安排有問題。離散數(shù)學(xué)的一個很重要目的是培養(yǎng)學(xué)生具有一定的抽象思維能力和邏輯推理能力,為計算機專業(yè)其他后續(xù)課程奠定堅實的基礎(chǔ)。河南理工大學(xué)計算機應(yīng)用型人才的離散數(shù)學(xué)培養(yǎng)方案是64學(xué)時,而且只有理論教學(xué),沒有實踐教學(xué),對離散數(shù)學(xué)這門具有豐富理論和實際應(yīng)用內(nèi)容的課程來說遠遠不夠。
三、教學(xué)方法探討
(一)精心組織課堂,注重離散數(shù)學(xué)及計算機學(xué)科的融合。針對其教學(xué)內(nèi)容繁多,但教學(xué)課時數(shù)偏少的特點,在無法增加教學(xué)課時的情況下,針對不同的教學(xué)要求,把知識單元分成三種類型[3]:核心知識單元、推薦知識單元和可選知識單元。如工程型離散數(shù)學(xué)課程的核心知識單元是:集合、關(guān)系、函數(shù)、樹、圖、基本邏輯、基本證明技術(shù)、基本計數(shù);推薦知識單元是:特殊的圖、代數(shù)結(jié)構(gòu)及相關(guān)的證明技術(shù);可選知識單元是:高級計數(shù),初等數(shù)論,形式系統(tǒng),以及相關(guān)的證明技術(shù)。在制訂教學(xué)計劃時,應(yīng)該選擇全部核心知識單元和推薦知識單元。在可選知識單元中,若專業(yè)特色是信息安全,則可以選用初等數(shù)論;若專業(yè)特色是人工智能,則可以選用形式系統(tǒng)。同時,需要教師根據(jù)具體的教學(xué)內(nèi)容在設(shè)置上有所側(cè)重,比如,對二元關(guān)系部分,側(cè)重點是加強對二元關(guān)系的性質(zhì)相關(guān)問題的論證方法的訓(xùn)練。
其次,在離散數(shù)學(xué)教學(xué)中融入計算機科學(xué)及數(shù)學(xué)建模相關(guān)的知識[4]-[5],還要以生動有趣的形式呈現(xiàn)給學(xué)生,注重學(xué)科之間的聯(lián)系。如講數(shù)理邏輯、函數(shù)內(nèi)容時可以結(jié)合計算機專業(yè)中編程語言、編譯方面的知識;講代數(shù)系統(tǒng)、布爾代數(shù)時可結(jié)合信息安全或密碼學(xué)方面的知識;講圖論時可結(jié)合通訊與網(wǎng)絡(luò)、算法分析等方面的知識。這就給離散數(shù)學(xué)教師提出了很高的要求。教師不僅要吃透離散數(shù)學(xué)教材的內(nèi)容,還要對計算機科學(xué)及數(shù)學(xué)建模等學(xué)科有相當?shù)牧私?。因此,需要教師不斷擴大知識面,改進教學(xué)模式。
(二)采用互動教學(xué)方式。在教學(xué)過程中注重與學(xué)生的互動,學(xué)生和教師具有平等的地位。學(xué)生可以對教師的授課內(nèi)容提出疑問,并和教師討論。教師可以采取提問、抽查的方式對學(xué)生進行督促。師生共同討論,加深學(xué)生對問題的理解。教師以問題為牽引,采用啟發(fā)式思維方式引導(dǎo)學(xué)生共同探討,在相互學(xué)習(xí)中理解和掌握數(shù)學(xué)基礎(chǔ)知識及其在信息安全領(lǐng)域的應(yīng)用。同時在教學(xué)過程中,教師可以經(jīng)常提出一些解決實踐問題,如利用同余基本原理安排足球比賽日程表,提高學(xué)生學(xué)習(xí)興趣。通過互動教學(xué)模式,學(xué)生注意力集中于課程內(nèi)容,課堂氣氛更加活躍。在教學(xué)過程中,教師一直處于學(xué)習(xí)狀態(tài),能夠在教授課程的同時獲取新的知識。
(三)在教學(xué)過程中結(jié)合使用網(wǎng)絡(luò)教學(xué)平臺。利用Moodle、BB(Blockbord)、SAKAI等主流網(wǎng)絡(luò)教學(xué)平臺進行網(wǎng)絡(luò)教學(xué)。網(wǎng)絡(luò)教學(xué)不僅是將教學(xué)材料發(fā)布在網(wǎng)上,更多的是不同學(xué)生之間,以及教師和學(xué)生之間的溝通與交流。另外,傳統(tǒng)教學(xué)過程中一些保證教學(xué)質(zhì)量的關(guān)鍵環(huán)節(jié),如作業(yè)、考試、筆記記錄等都應(yīng)該能夠在網(wǎng)上得到很好的支持。教師可以在平臺上開設(shè)網(wǎng)絡(luò)課程,同時,與現(xiàn)有“課堂教學(xué)”進行有機結(jié)合,開展基于網(wǎng)絡(luò)的教輔教學(xué)活動。幫助老師充分利用教學(xué)資源提高教學(xué)效率和質(zhì)量,減少重復(fù)勞動,提高整體教學(xué)質(zhì)量。
(四)加強實踐,提高學(xué)生的動手能力。離散數(shù)學(xué)的一個基本教學(xué)目的是培養(yǎng)和提高學(xué)生的邏輯思維能力,這正是程序設(shè)計所必備的基本能力,在離散數(shù)學(xué)中加入實驗教學(xué)是對這種能力很好的鍛煉[6]。教師可以設(shè)計一些上機編程的實踐內(nèi)容,例如,要求學(xué)生設(shè)計實驗判斷等價關(guān)系、求主析(合)取范式、實現(xiàn)最小生成樹的Kruskal算法、判斷某一簡單圖是否為二分圖或歐拉圖等。實驗采用學(xué)生個人或3、4個人的小組合作方式。學(xué)生在老師的指導(dǎo)下,完成相關(guān)實驗。這樣,學(xué)生就可以驗證理論知識,深化對理論知識的理解。另外,實驗教學(xué)要求學(xué)生掌握數(shù)據(jù)結(jié)構(gòu)、程序設(shè)計、算法分析(算法優(yōu)化)等方面的知識。讓學(xué)生自己通過分析問題、編寫并調(diào)試程序解決實際問題,更好地理解離散數(shù)學(xué)相關(guān)知識,感受到離散數(shù)學(xué)的價值所在,培養(yǎng)學(xué)生綜合運用所學(xué)知識解決實際問題的能力,對學(xué)生綜合素質(zhì)的培養(yǎng)具有良好的效果,提高學(xué)生的學(xué)習(xí)興趣和理論與實際結(jié)合的能力。
(五)采用靈活的考核方式。以往數(shù)學(xué)類課程大都以平時作業(yè)和期末卷面成績的綜合為最終成績,為了更好地適應(yīng)課程的發(fā)展,需要教師采用靈活多樣的考核方式對學(xué)生進行考核,大體上可以分成這樣幾個部分:期末考試(60%)、平時作業(yè)(10%)、實踐環(huán)節(jié)(20%)、科研能力(參加課程內(nèi)容相關(guān)的創(chuàng)新性項目,撰寫論文或報告情況)(10%)。通過這種方式全方位考查學(xué)生的水平,全面培養(yǎng)學(xué)生的能力。
四、結(jié)語
影響離散數(shù)學(xué)教學(xué)質(zhì)量的因素很多。既要培養(yǎng)學(xué)生的抽象思維能力和邏輯推理能力,又要引導(dǎo)學(xué)生學(xué)會利用計算機解決實際數(shù)學(xué)問題。扎實的數(shù)學(xué)理論功底對掌握計算機技術(shù)固然重要,而通過編程解決數(shù)學(xué)問題,可以加深對數(shù)學(xué)理論、數(shù)學(xué)模型的理解,加強運用,因此,在教學(xué)中應(yīng)堅持將離散數(shù)學(xué)與計算機編程相結(jié)合,并加以豐富的應(yīng)用實例,激發(fā)學(xué)生對該課程及相關(guān)課程的興趣,取得良好的教學(xué)效果。
參考文獻:
[1]屈婉玲,耿素云,張立昂.離散數(shù)學(xué)[M].北京:高等教育出版社,2008.
[2]左孝凌.離散數(shù)學(xué)[M].上海:上海科學(xué)技術(shù)文獻出版社,1982.
[3]屈婉玲,王元元,傅彥等.離散數(shù)學(xué)課程教學(xué)實施方案[J].中國大學(xué)教學(xué),2011,(1):39-41.
[4]劉梅.應(yīng)用型本科院校離散數(shù)學(xué)課程建設(shè)[J].計算機教育,2011,(2):66-69.
[5]溫雪蓮.在離散數(shù)學(xué)的教學(xué)實踐中融入數(shù)學(xué)建模思想[J].中國科技信息,2010,(3):236-238.
[6]羅幼芝.提高離散數(shù)學(xué)實踐性教學(xué)的探討[J].湖北生態(tài)工程職業(yè)技術(shù)學(xué)院學(xué)報,2009,7(4):25-28.
項目資助:河南理工大學(xué)教育教學(xué)改革研究項目(2013JG078)。