彭滔 魏雷陽(yáng)
摘要:蒙特卡羅方法是一種新型計(jì)算方法,它需要真實(shí)的隨機(jī)數(shù),在統(tǒng)計(jì)學(xué)方面有強(qiáng)有力的應(yīng)用,隨著高性能計(jì)算機(jī)變得越來(lái)越便宜,此方面變得愈發(fā)普遍,該文通過(guò)設(shè)計(jì)一個(gè)隨機(jī)試驗(yàn),建立pi值與試驗(yàn)次數(shù)的聯(lián)系方程,使用R語(yǔ)言來(lái)模擬計(jì)算PI值。
關(guān)鍵詞:蒙特卡羅方法;隨機(jī)模擬;R語(yǔ)言
中圖分類(lèi)號(hào):TP311 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-3044(2014)17-4038-02
A New Way to Compute Simulately PI with Monte Carlo Method in R Language
PENG Tao, WEI Lei-yang
(Sanya Polythenic College, Sanya 572022, China)
Abstract: Monte Carlo methods is a new way of computational algorithms, basically Monte Carlo simulation methods require truly random numbers , Monte Carlo is a powerful numerical technique useful for solving problems especially in statistics. When high-speed computers becomes cheap,the method has gained in importance and popularity,when a circle with its bounding square is drawn,let randomly generate a point in the squre, the probability that the point falls in the circle is circle area /square area = PI/4,we can get pi from the equation.We finish the stochastic simulation with R language in the article.
Key words: Monte Carlo methods; stochastic simulation; R languange
1 蒙特卡羅方法簡(jiǎn)介
蒙特卡羅方法是一種隨機(jī)模擬方法,以概率和統(tǒng)計(jì)理論方法為基礎(chǔ),使用隨機(jī)數(shù)(或更常見(jiàn)的偽隨機(jī)數(shù))來(lái)解決計(jì)算問(wèn)題的方法。其早期的雛形存在于17-18世紀(jì),1777年法國(guó)數(shù)學(xué)家普豐(Georges Louis Leclere de Buffon,1707—1788)提出用投針實(shí)驗(yàn)的方法求圓周率π,統(tǒng)計(jì)史上稱(chēng)為普豐投針問(wèn)題。
摘要:蒙特卡羅方法是一種新型計(jì)算方法,它需要真實(shí)的隨機(jī)數(shù),在統(tǒng)計(jì)學(xué)方面有強(qiáng)有力的應(yīng)用,隨著高性能計(jì)算機(jī)變得越來(lái)越便宜,此方面變得愈發(fā)普遍,該文通過(guò)設(shè)計(jì)一個(gè)隨機(jī)試驗(yàn),建立pi值與試驗(yàn)次數(shù)的聯(lián)系方程,使用R語(yǔ)言來(lái)模擬計(jì)算PI值。
關(guān)鍵詞:蒙特卡羅方法;隨機(jī)模擬;R語(yǔ)言
中圖分類(lèi)號(hào):TP311 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-3044(2014)17-4038-02
A New Way to Compute Simulately PI with Monte Carlo Method in R Language
PENG Tao, WEI Lei-yang
(Sanya Polythenic College, Sanya 572022, China)
Abstract: Monte Carlo methods is a new way of computational algorithms, basically Monte Carlo simulation methods require truly random numbers , Monte Carlo is a powerful numerical technique useful for solving problems especially in statistics. When high-speed computers becomes cheap,the method has gained in importance and popularity,when a circle with its bounding square is drawn,let randomly generate a point in the squre, the probability that the point falls in the circle is circle area /square area = PI/4,we can get pi from the equation.We finish the stochastic simulation with R language in the article.
Key words: Monte Carlo methods; stochastic simulation; R languange
1 蒙特卡羅方法簡(jiǎn)介
蒙特卡羅方法是一種隨機(jī)模擬方法,以概率和統(tǒng)計(jì)理論方法為基礎(chǔ),使用隨機(jī)數(shù)(或更常見(jiàn)的偽隨機(jī)數(shù))來(lái)解決計(jì)算問(wèn)題的方法。其早期的雛形存在于17-18世紀(jì),1777年法國(guó)數(shù)學(xué)家普豐(Georges Louis Leclere de Buffon,1707—1788)提出用投針實(shí)驗(yàn)的方法求圓周率π,統(tǒng)計(jì)史上稱(chēng)為普豐投針問(wèn)題。
摘要:蒙特卡羅方法是一種新型計(jì)算方法,它需要真實(shí)的隨機(jī)數(shù),在統(tǒng)計(jì)學(xué)方面有強(qiáng)有力的應(yīng)用,隨著高性能計(jì)算機(jī)變得越來(lái)越便宜,此方面變得愈發(fā)普遍,該文通過(guò)設(shè)計(jì)一個(gè)隨機(jī)試驗(yàn),建立pi值與試驗(yàn)次數(shù)的聯(lián)系方程,使用R語(yǔ)言來(lái)模擬計(jì)算PI值。
關(guān)鍵詞:蒙特卡羅方法;隨機(jī)模擬;R語(yǔ)言
中圖分類(lèi)號(hào):TP311 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1009-3044(2014)17-4038-02
A New Way to Compute Simulately PI with Monte Carlo Method in R Language
PENG Tao, WEI Lei-yang
(Sanya Polythenic College, Sanya 572022, China)
Abstract: Monte Carlo methods is a new way of computational algorithms, basically Monte Carlo simulation methods require truly random numbers , Monte Carlo is a powerful numerical technique useful for solving problems especially in statistics. When high-speed computers becomes cheap,the method has gained in importance and popularity,when a circle with its bounding square is drawn,let randomly generate a point in the squre, the probability that the point falls in the circle is circle area /square area = PI/4,we can get pi from the equation.We finish the stochastic simulation with R language in the article.
Key words: Monte Carlo methods; stochastic simulation; R languange
1 蒙特卡羅方法簡(jiǎn)介
蒙特卡羅方法是一種隨機(jī)模擬方法,以概率和統(tǒng)計(jì)理論方法為基礎(chǔ),使用隨機(jī)數(shù)(或更常見(jiàn)的偽隨機(jī)數(shù))來(lái)解決計(jì)算問(wèn)題的方法。其早期的雛形存在于17-18世紀(jì),1777年法國(guó)數(shù)學(xué)家普豐(Georges Louis Leclere de Buffon,1707—1788)提出用投針實(shí)驗(yàn)的方法求圓周率π,統(tǒng)計(jì)史上稱(chēng)為普豐投針問(wèn)題。