王 志 國,向 俊 尤,萬 素 磊,武 柯 含,魯 毅,趙 建 軍
(包頭師范學(xué)院 物理科學(xué)與技術(shù)學(xué)院,內(nèi)蒙古 包頭 014030)
將原料La2O3、Gd2O3、MnCO3和SrCO3通過固相反應(yīng)法合成(La0.9Gd0.1)4/3Sr5/3Mn2O7多晶樣品。實(shí)驗(yàn)中所用的氧化物純度都大于99.9%。充分混合研磨按比例稱量的各組分氧化物,將研磨后粉末在1000℃下預(yù)燒12h。然后再將預(yù)燒后的粉末研磨并在相同條件下進(jìn)行第二次預(yù)燒,最后,將兩次預(yù)燒后的粉末研磨、壓片。并將片狀樣品在1350℃煅燒24h并隨爐冷卻,最后,得到外觀平整、堅(jiān)硬而無裂痕的圓形塊狀樣品。用X射線衍射儀檢測樣品的單相性。樣品的磁化強(qiáng)度與溫度的關(guān)系(M-T曲線)和電阻與溫度的關(guān)系(R-T曲線)是通過美國Quantum Design公司設(shè)計(jì)的PPMS(the Physical Property Measurement System,PPMS-141)測量,測量溫度范圍為15K-300K。
圖1是(La0.9Gd0.1)4/3Sr5/3Mn2O7樣品的X射線衍射圖。其衍射圖譜由Sr3Ti2O7和ABO3型鈣鈦礦相的衍射峰共同組成(ABO3相的衍射峰用箭頭標(biāo)出),并且(105)和(110)峰的相對強(qiáng)度發(fā)生了變化,這表明樣品是由Sr3Ti2O7和ABO3結(jié)構(gòu)的相共同組成。由于在雙層鈣鈦礦結(jié)構(gòu)(La0.9Gd0.1)4/3Sr5/3Mn2O7中,離子半徑較小的Gd3+會(huì)優(yōu)先占據(jù)巖鹽層的R位[10,11],隨著Gd3+的含量的增加,巖鹽層內(nèi)的失配效應(yīng)和應(yīng)力增加,這樣會(huì)導(dǎo)致雙層鈣鈦礦的結(jié)構(gòu)不穩(wěn)定,從而發(fā)生結(jié)構(gòu)相分離生成無限層(ABO3)的鈣鈦礦相。
圖1:室溫下(La0.9Gd0.1)4/3Sr5/3Mn2O7的X射線衍射譜
圖2:0.1T磁場下(La0.9Gd0.1)4/3Sr5/3Mn2O7樣品的磁化強(qiáng)度隨溫度的變化關(guān)系,插圖表示dM/dT與T的關(guān)系
圖3:在溫度范圍內(nèi),(a)、(b)、(c)和(d)分別為樣品的R-T曲線ln(R/T)—1/T曲線、lnR—1/T曲線和lnR—T-1/4曲線
〔參考文獻(xiàn)〕
[1]趙建軍,等. 鈣鈦礦錳氧化物Nd0.5Sr0.3Ba0.2MnO3多晶的磁性和相分離 [J]. 內(nèi)蒙古師范大學(xué)學(xué)報(bào):自然科學(xué)漢文版,2009,38(1):48-51.
[2]Zhao Jian-Jun, Lu Yi, Haosi Ba-Yar, et al. Spontaneous magnetization and resistivity jumps in bilayered manganite (La0.8Eu0.2)4/3Sr5/3Mn2O7single crystals [J]. Chin Phys B, 2008, 17(07): 2717(1-4).
[3]Kimura T Tomioka Y Kuwahara H, et al. Interplane tunneling magnetoresistance in a layered manganite crystal [J]. Science, 1996, 274:1698-1701.
[4]Hirota K, Ishihara S, Fujioka H, et al. Spin dynamical properties and orbital state of the layered perovskite La2-2xSr1+2xMn2O7(0.3 [5]Argyriou D N, Mitchell J F, Radaelli P J, et al. Lattice effects and magnetic structure in the layered colossal magnetoresistance manganite La2-2xSr1+2xMn2O7(x=0.3) [J]. Phys Rev B, 1999, 59:8695-8702. [6]Perring T G, Aeppli G, Moritomo Y, et al. Antiferromagnetic short range order in a two-dimensional manganite exhibiting giant magnetoresistance [J]. Phys Rev Lett, 1997, 78: 3197-3200. [7]Liu L, Zhang L J, Niu L Y, et al. Effect of sintering temperature on the structure and transport properties of La4/3Sr5/3Mn2O7[J]. Material Science and Engineering B, 2005, 117: 227-230. [8]Liu L, Xia Z C, Yuan S L, et al. Electrical transport and magnetic properties of La4/3Sr5/3Mn2O7[J]. Material Science and Engineering B, 2006, 127: 55-57. [9]Chattopadhyay S, Giri S and Majumdar S. Glassy magnetic ground state in La4/3Sr5/3Mn2O7: Role of first order phase transition and short range antiferromagnetic correlations [J]. J Appl Phys, 2012, 112: 083915. [10]Shannon R D, Prewitt C T.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acted crystallogr A, 1976 32:751-767. [11]Battle P D Mark A, Green N, et al. Control of electronic properties by lanthanide size and manganese oxidation state in the Mn3+/Mn4+Ruddlesden-Popper phasesLn2-xSr1+xMn2O7Vente [J] . Chem Mater, 1997, 7: 977-988. [12]Zhang J, Wang F W, Zhang Z Y, et al. Effect of Lanthanide substitution on structure and magnetic properties in layered perovskit La1.2Sr1.8Mn2O7[J]. Mater sci Eng B, 2000, 76(1):6-9. [13]Wang A H, Liu Y, Zhang Z Y, et al. Magnetic entropy change and colossal magnetoresistance effect in the layered perovskite La1.34Sr1.66Mn2O7,Solid State Common [J]. 2004,130 (3-4):293-269.