吳海霞
摘要:針對一類具有區(qū)間時(shí)滯和隨機(jī)干擾的BAM神經(jīng)網(wǎng)絡(luò)的全局漸近穩(wěn)定性問題,通過構(gòu)造合適的Lyapunov-Krasovskii泛函,應(yīng)用隨機(jī)分析和自由權(quán)值矩陣方法,并考慮時(shí)滯區(qū)間范圍,得到了新的穩(wěn)定性充分條件。該條件能夠保證時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)在均方意義下是全局漸近穩(wěn)定的,同時(shí)適用于快時(shí)滯和慢時(shí)滯,其適用范圍更廣。最后,通過一個(gè)仿真實(shí)例證明了定理的有效性。
關(guān)鍵詞:雙向聯(lián)想記憶神經(jīng)網(wǎng)絡(luò);全局漸近穩(wěn)定性;區(qū)間時(shí)滯;線性矩陣不等式
中圖分類號:TP183 文獻(xiàn)標(biāo)識碼:A 文章編號:1009-3044(2014)19-4544-06
1 概述
雙向聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)(Bidirectional Associative Memory, BAM)已經(jīng)成功應(yīng)用于諸多領(lǐng)域,如模式識別、圖像處理、自動控制、模型辨識和優(yōu)化問題等。所有這些成功的應(yīng)用都必須依賴于神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性。眾所周知,許多實(shí)際系統(tǒng)的數(shù)學(xué)模型中均含有時(shí)滯的現(xiàn)象,在BAM神經(jīng)網(wǎng)絡(luò)中也不例外。例如,在模擬神經(jīng)網(wǎng)絡(luò)電路實(shí)現(xiàn)中,由于運(yùn)放器的開關(guān)速度限制會產(chǎn)生時(shí)滯,神經(jīng)網(wǎng)絡(luò)中的軸突信號傳輸延遲也會產(chǎn)生時(shí)滯。這些都會導(dǎo)致不良的動態(tài)網(wǎng)絡(luò)特性,即系統(tǒng)失穩(wěn)、產(chǎn)生振蕩甚至混沌,造成系統(tǒng)性能指標(biāo)的下降。目前,時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析問題已經(jīng)取得了大量的研究成果[1-7],其中時(shí)滯類型包括常時(shí)滯、變時(shí)滯與分布時(shí)滯等。
事實(shí)上,隨機(jī)因素確實(shí)存在于很多的實(shí)際系統(tǒng),比如物理電路、生物系統(tǒng)等。為了抵消這些不確定因素的影響,必須將系統(tǒng)描述為隨機(jī)系統(tǒng)。一般而言,在生物神經(jīng)系統(tǒng)中,突觸遞質(zhì)的傳遞會受到隨機(jī)噪聲和其他一些概率事件的影響,這些隨機(jī)擾動理所當(dāng)然的會影響神經(jīng)系統(tǒng)的穩(wěn)定性。系統(tǒng)建模一個(gè)基本原則是盡可能模擬實(shí)際情況,因此,在BAM神經(jīng)網(wǎng)絡(luò)的建模中考慮隨機(jī)擾動的也是不可避免的。截止目前,已有許多國內(nèi)外學(xué)者致力于帶有隨機(jī)干擾的時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性有研究工作[8-9]。然而,對于某些系統(tǒng),在時(shí)滯非零時(shí)是穩(wěn)定的,時(shí)滯為零時(shí)卻是不穩(wěn)定的。因此,研究非零時(shí)滯系統(tǒng)的穩(wěn)定性十分重要,非零時(shí)滯可以將時(shí)滯定義在一個(gè)區(qū)間內(nèi),應(yīng)用范圍更廣。
本文將應(yīng)用隨機(jī)分析和自由權(quán)值矩陣方法,構(gòu)造合適的Lyapunov-Krasovskii泛函并考慮時(shí)滯區(qū)間,研究新的穩(wěn)定性判定準(zhǔn)則,用以保證時(shí)滯BAM神經(jīng)網(wǎng)絡(luò)在均方意義下是全局漸近穩(wěn)定的。
2 系統(tǒng)模型及引理
考慮以下帶區(qū)間時(shí)滯的雙向聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)模型:
[du1i(t)dt=-a1iu1i(t)+j=1mw1jif1j(u2j(t-τ2j(t)))+Ii, i=1,2,…,n,du2j(t)dt=-a2ju2j(t)+i=1nw2ijf2i(u1i(t-τ1i(t)))+Jj, j=1,2,…,m,] (1)
其中[u1i(t)]和[u2j(t)]分別是第[i]個(gè)神經(jīng)元和第[j]個(gè)神經(jīng)元的狀態(tài);[f1j(?)],[f2i(?)]分別表示第[i]個(gè)神經(jīng)元和第[j]個(gè)神經(jīng)元的激活函數(shù);[Ii,Jj]表示在[t]時(shí)刻的外部輸入;[a1i,a2j]為正數(shù),分別表示第[i]個(gè)神經(jīng)元和第[j]個(gè)神經(jīng)元的被動衰減率;[w1ji,w2ij]表示突觸連接權(quán)值;[τ1i(t),τ2j(t)]為時(shí)變時(shí)滯。有關(guān)系統(tǒng)(1)的初始條件假設(shè)如下:
[u1i(s)=?u1i(s), t∈-τ1,0, i=1,2,…,n,u2j(s)=?u2j(t), t∈-τ2,0, j=1,2,…,m.]
假設(shè)1 在系統(tǒng)(1)神經(jīng)元激活函數(shù)[f1j(?)]和[f2i(?)]有界,且存在正數(shù)[l(1)j>0]和[l(2)i>0]滿足:
[f1j(ξ1)-f1j(ξ2)≤l(1)jξ1-ξ2, f2i(ξ1)-f2i(ξ2)≤l(2)iξ1-ξ2, ?ξ1,ξ2∈R, i=1,2,…,n, j=1,2,…,m.]
按照通常做法,假設(shè)[u1?=u?11,u?12,…,u?1nT, u2?=u?21,u?22,…,u?2mT]是系統(tǒng)(1)的平衡點(diǎn)。為了簡化證明過程,通過變換[x1i(t)=u1i(t)-u?1i,][x2j(t)=u2j(t)-u?2j,] [f2i(x1i(t))=f2i(x1i(t)+u?1i)-f2i(u?1i),] [f1j(u2j(t))=f1j(u2j(t)+u?2j)-f1j(u?2j), ]轉(zhuǎn)移系統(tǒng)(1)的平衡點(diǎn)到新系統(tǒng)的原點(diǎn),得到以下系統(tǒng)模型:
[x1i(t)=-a1ix1i(t)+j=1mw1jif1j(x2j(t-τ2j(t))), i=1,2,…,n,x2j(t)=-a2jx2j(t)+i=1nw2ijf2i(x1i(t-τ1i(t))), j=1,2,…,m. ] (2)
將式(2)改寫為矩陣形式,則有:
[x1(t)=-A1x1(t)+W1f1(x2(t-τ2(t))),x2(t)=-A2x2(t)+W2f2(x1(t-τ1(t))),] (3)
其中[x1(t)=x11(t),x12(t),…,x1n(t)T, x2(t)=x21(t),x22(t),…,x2m(t)T, ] [A1=diaga11,a12,…,a1n, ][ A2=diaga21,a22,…,a2m],
[W1=w1jim×nT, W2=w2ijn×mT, f1(x2)=f11(x2),f12(x2),…,f1m(x2)T,][f2(x1)=f21(x1),f22(x1),…,f2n(x1)T,]
[τ1(t)=τ11(t),x12(t),…,τ1n(t)T,] [τ2(t)=τ21(t),τ22(t),…,τ2m(t)T.]
顯然,神經(jīng)元激活函數(shù)具有如下性質(zhì):endprint
[fT1(x2(t))f1(x2(t))≤x2T(t)LT1L1x2(t),fT2(x1(t))f2(x1(t))≤x1T(t)LT2L2x1(t),] (4)
其中[L1=diagl(1)1,l(1)2,…,l(1)m],[L2=diagl(2)1,l(2)2,…,l(2)n.]
接下來,將考慮如下具有區(qū)間時(shí)滯和隨機(jī)干擾的BAM神經(jīng)網(wǎng)絡(luò)模型:
[dx1(t)=-A1x1(t)+W1f1(x2(t-τ2(t)))dt +C1x1(t)+D1x2(t-τ2(t))dω(t),dx2(t)=-A2x2(t)+W2f2(x1(t-τ1(t)))dt +C2x2(t)+D2x1(t-τ1(t))dω(t),] (5)
其中[ω(t)=ω1(t),ω2(t),…,ωl(t)T]是一個(gè)定義在完備概率空間[(Ω,?,?tt≥0,)]上的布朗運(yùn)動(Brownian motion)。
假設(shè)2 時(shí)滯[τ1(t)]和[τ2(t)]滿足:
[0≤τ_1≤τ1(t)≤τ1, 0≤τ_2≤τ2(t)≤τ2,] (6)
[τ1(t)≤μ1, τ2(t)≤μ2,] (7)
其中[0≤τ_1<τ1, 0≤τ_2<τ2, μ1]和[μ2]為正常量。
引理1 對于任意適當(dāng)維數(shù)常數(shù)矩陣[D]和[N],矩陣[F(t)]滿足[FT(t)F(t)≤I],有:
(i) 對任意常數(shù)[ε>0,][DF(t)N+NTFT(t)DT≤ε-1DDT+εNTN,]
(ii) 對任意常數(shù)[P>0],[2aTb≤ aTP-1a+bTPb.]
引理2 [10] 隨機(jī)微分方程的平凡解
[d(x(t),y(t),t)=G(x(t),y(t),t)dt+H(x(t),y(t),t)dω(t)] [t∈t0,T]
有:
[x(t)=?x(t) t∈-τ,0, y(t)=?y(t) t∈-ρ,0,] [G:R+×Rn×Rn→Rn] 和[H:R+×Rn×Rn→Rn×m]在概率上是全局漸近穩(wěn)定的,假如存在函數(shù)[V(x(t),y(t),t)∈R+×Rn×Rn]在Lyapunov意義上是正定的并且滿足
[?V(x(t),y(t),t)=?Vdt+gradVG+12traceHHTHess(V)<0.]
矩陣[Hess(V)]表示Hessian矩陣的二階偏導(dǎo)數(shù)。
3 全局漸近穩(wěn)定性
首先,定義
[g1(t)=-(A1+ΔA1)x1(t)+(W1+ΔW1)f1(x2(t-τ2(t))),g2(t)=-(A2+ΔA2)x2(t)+(W2+ΔW2)f2(x1(t-τ1(t))),]
[g3(t)=C1+ΔC1x1(t)+D1+ΔD1x2(t-τ2(t)),g4(t)=C2+ΔC2x2(t)+D2+ΔD2x1(t-τ1(t)),]
那么,系統(tǒng)(1) 被記為:
[dx1(t)=g1(t)dt+g3(t)dω(t),dx2(t)=g2(t)dt+g4(t)dω(t).] (8)
定理1 對于給定的正常數(shù)[0≤τ_1<τ1, 0≤τ_2<τ2, μ1]和[μ2],系統(tǒng)(5)在均方意義下是全局漸近穩(wěn)定的,如果存在矩陣, [Pi>0, Qi≥0, Ri≥0, Ti≥0, i=1,2, Zj>0, j=1,2,…,8,][N(i)j,M(i)j,][S(i)j, j=1,2, i=1,2,]和兩個(gè)正常量[α1, α2,]使得以下LMI(9)成立:
[Ξ=Ξ0Ξ1Ξ2Ξ3Ξ4?-Ξ11000??-Ξ2200???-Ξ330????-Ξ44<0,] (9)
其中
[Ξ0=?1?T2U1?T3U2?T4U3?T5U4?-U1000??-U200???-U30????-U4, Ξi=τiN(i)1hiM(i)1hiS(i)1τiN(i)2hiM(i)2hiS(i)2000???000, Ξ2+i=N(i)1M(i)1S(i)1N(i)2M(i)2S(i)2000???000,]
[?1=Σ10Σ500P1W1M(1)1-S(1)100?Σ20Σ6P2W2000M(2)1-S(2)1??Σ3000M(1)2-S(1)200???Σ40000M(2)2-S(2)2????-α1I00000?????-α2I0000??????-Q1000???????-R100????????-Q20?????????-R2,]
[?2=-A10000W10000, ?3=0-A200W200000,]
[?4=C100D1000000, ?5=0C2D20000000,]
[U1=τ1Z1+h1Z3, U2=τ2Z2+h2Z4, U3=P1+τ1Z5+h1Z7,U4=P2+τ2Z6+h2Z8, Ξ11=diagτ1Z1, h1Z3, h1(Z1+Z3),Ξ22=diagτ2Z2, h2Z4, h2(Z2+Z4),]
[Ξ33=diagZ5, Z7, Z5+Z7, Ξ44=diagZ6, Z8, Z6+Z8,]
[Σi=-PiAi-AiTPi+Qi+Ri+Ti+N(i)1+N(i)1T,Σ2+i=-(1-μi)Ti+S(i)2+S(i)2T-N(i)2-N(i)2T -M(i)2-M(i)2T+αiLT3-iL3-i,]
[Σ4+i=S(i)1-N(i)1-M(i)1+N(i)2T, hi=τi-τ_i, i=1,2.]
證明. 構(gòu)造如下Lyapunov-Krasovskii泛函:endprint
[V(x1(t),x2(t))=i=12V1(x1(t),x2(t))+V2(x1(t),x2(t))+V3(x1(t),x2(t)),V1(x1(t),x2(t))=xTi(t)Pixi(t),]
[V2(x1(t),x2(t))=t-τ_itxTi(s)Qixi(s)ds+t-τitxTi(s)Rixi(s)ds+t-τi(t)txTi(s)Tixi(s)ds,]
[V3(x1(t),x2(t))=-τi0t+θtgiT(s)Zigi(s)dsdθ+-τi-τ_it+θtgiT(s)Z2+igi(s)dsdθ +-τi0t+θtg2+iT(s)Z4+ig2+i(s)dsdθ+-τi-τ_it+θtg2+iT(s)Z6+ig2+i(s)dsdθ.] (10)
由牛頓-萊布尼茨(Leibniz-Newton)公式可知,對于任意具有適當(dāng)維數(shù)的矩陣[N(i)j,M(i)j,S(i)j, i=1,2,][j=1,2,],以下等式成立:
[0=2xTi(t)N(i)1+xTi(t-τi(t))N(i)2 ×xi(t)-xi(t-τi(t))-t-τi(t)tgi(s)ds-t-τi(t)tg2+i(s)dω(s),] (11)
[0=2xTi(t)M(i)1+xTi(t-τi(t))M(i)2 ×xi(t-τ_i)-xi(t-τi(t))-t-τi(t)t-τ_igi(s)ds-t-τi(t)t-τ_ig2+i(s)dω(s),] (12)
[0=2xTi(t)S(i)1+xTi(t-τi(t))S(i)2 ×xi(t-τi(t))-xi(t-τi)-t-τit-τi(t)gi(s)ds-t-τit-τi(t)g2+i(s)dω(s).] (13)
應(yīng)用引理1(ii),對任意矩陣[Zj≥0, j=1,2,…,8,],下列不等式成立:
[-2ξT(t)N(i)t-τi(t)tgi(s)ds≤τiξT(t)N(i)Z-1iN(i)Tξ(t)+t-τi(t)tgTi(s)Zigi(s)ds,] (14)
[-2ξT(t)M(i)t-τi(t)t-τ_igi(s)ds≤hiξT(t)M(i)Z-12+iM(i)Tξ(t)+t-τi(t)t-τ_igTi(s)Z2+igi(s)ds,] (15)
[-2ξT(t)S(i)t-τit-τi(t)gi(s)ds≤ hiξT(t)S(i)Zi+Z2+i-1S(i)Tξ(t)+t-τit-τi(t)gTi(s)(Zi+Z2+i)gi(s)ds,] (16)
[-2ξT(t)N(i)t-τi(t)tg2+i(s)dω(s)≤ξT(t)N(i)Z-14+iN(i)Tξ(t)+t-τi(t)tgT2+i(s)dω(s)Z4+it-τi(t)tg2+i(s)dω(s),] (17)
[-2ξT(t)M(i)t-τi(t)t-τ_ig2+i(s)dω(s)ds≤ξT(t)M(i)Z-16+iM(i)Tξ(t)+t-τi(t)t-τ_igT2+i(s)dω(s)Z6+it-τi(t)t-τ_ig2+i(s)dω(s),] (18)
[-2ξT(t)S(i)t-τit-τi(t)g2+i(s)dω(s)≤ ξT(t)S(i)Z4+i+Z6+i-1S(i)Tξ(t) +t-τit-τi(t)gT2+i(s)dω(s)Z4+i+Z6+it-τit-τi(t)g2+i(s)dω(s),] (19)
其中
[N(i)=N(i)1T N(i)2T 0 0 0 0 0 0 0 0T,M(i)=M(i)1T M(i)2T 0 0 0 0 0 0 0 0T,]
[S(i)=S(i)1T S(i)2T 0 0 0 0 0 0 0 0T.]
由式(4)有
[fTi(x3-i(t-τ3-i(t)))fi(x3-i(t-τ3-i(t)))≤x3-iT(t-τ3-i(t))×LTiLix3-i(t-τ3-i(t)), i=1,2.] (20)
沿著系統(tǒng)(5)解的軌跡,對[?V]求時(shí)間的導(dǎo)數(shù):
[?V(x1(t),x2(t))=i=12?V1(x1(t),x2(t)) +?V2(x1(t),x2(t))+?V3(x1(t),x2(t)),]
[?V1(x1(t),x2(t))=2xTi(t)Pi-Aixi(t)+Wifi(x3-i(t-τ3-i(t))) +gT2+i(t)Pig2+i(t),] (21)
[?V2(x1(t),x2(t))≤xTi(t)(Qi+Ri)xi(t)-xTi(t-τ_i)Qixi(t-τ_i) -xTi(t-τi)Rixi(t-τi)+xTi(t)Tixi(t) -(1-μi)xTi(t-τi(t))Tixi(t-τi(t)) ,] (22)
[?V3(x1(t),x2(t))=gTi(t)τiZi+hiZ2+igi(t)-t-τitgTi(s)Zigi(s)ds -t-τit-τ_igTi(s)Z2+igi(s)ds+gT2+i(t)τiZ4+i+hiZ6+ig2+i(t) -t-τitgT2+i(s)Z4+ig2+i(s)ds-t-τit-τ_igT2+i(s)Z6+ig2+i(s)ds]
[ =gTi(t)τiZi+hiZ2+igi(t)+gT2+i(t)τiZ4+i+hiZ6+ig2+i(t) -t-τi(t)tgTi(s)Zigi(s)ds-t-τi(t)t-τ_igTi(s)Z2+igi(s)ds -t-τit-τi(t)gTi(s)(Zi+Z2+i)gi(s)ds-t-τi(t)tgT2+i(s)Z4+ig2+i(s)ds -t-τi(t)t-τ_igT2+i(s)Z6+ig2+i(s)ds-t-τit-τi(t)gT2+i(s)(Z4+i+Z6+i)g2+i(s)ds.] (23)endprint
聯(lián)立式(11)-(23),可得:
[?V(x1(t),x2(t))≤ξT(t)?1+?T2U1?2+?T3U2?3+?T4U3?4+?T5U4?5 +i=12τiN(i)Z-1iN(i)T+hiM(i)Z-12+iM(i)T +hiS(i)Zi+Z2+i-1S(i)T+N(i)Z-14+iN(i)T +M(i)Z-16+iM(i)T+S(i)Z4+i+Z6+i-1S(i)Tξ(t) +t-τi(t)tgT2+i(s)dω(s)Z4+it-τi(t)tg2+i(s)dω(s) +t-τi(t)t-τ_igT2+i(s)dω(s)Z6+it-τi(t)t-τ_ig2+i(s)dω(s)]
[ +t-τit-τi(t)gT2+i(s)dω(s)Z4+i+Z6+it-τit-τi(t)g2+i(s)dω(s) -t-τi(t)tgT2+i(s)Z4+ig2+i(s)ds-t-τi(t)t-τ_igT2+i(s)Z6+ig2+i(s)ds -t-τit-τi(t)gT2+i(s)(Z4+i+Z6+i)g2+i(s)ds,] (24)
其中
[ξ(t)=xT1(t) xT2(t) xT1(t-τ1(t)) xT2(t-τ2(t)) fT2(x1(t-τ1(t))) fT1(x2(t-τ2(t))) xT1(t-τ_1) xT1(t-τ1) xT2(t-τ_2) xT2(t-τ2)T.]
由于
[Εt-τi(t)tgT2+i(s)dω(s)Z4+it-τi(t)tg2+i(s)dω(s)=Εt-τi(t)tgT2+i(s)Z4+ig2+i(s)ds,]
[Εt-τi(t)t-τ_igT2+i(s)dω(s)Z6+it-τi(t)t-τ_ig2+i(s)dω(s)=Εt-τi(t)t-τ_igT2+i(s)Z6+ig2+i(s)ds,]
[Εt-τit-τi(t)gT2+i(s)dω(s)Z4+i+Z6+it-τit-τi(t)g2+i(s)dω(s)= Εt-τit-τi(t)gT2+i(s)(Z4+i+Z6+i)g2+i(s)ds,]
則有
[Ξ=?1+?T2U1?2+?T3U2?3+?T4U3?4+?T5U4?5 +i=12τiN(i)Z-1iN(i)T+hiM(i)Z-12+iM(i)T+hiS(i)Zi+Z2+i-1S(i)T +N(i)Z-14+iN(i)T+M(i)Z-16+iM(i)T+S(i)Z4+i+Z6+i-1S(i)T<0,]
對所有[x1(t),x2(t)]([x1(t)=x2(t)=0]除外),有
[ΕdV(x1(t),x2(t))=Ε?V(x1(t),x2(t))dt<0],
其中[Ε]為數(shù)學(xué)期望算子。由Schur補(bǔ)充條件,上式等價(jià)于[Ξ<0]。那么,由Lyapunov穩(wěn)定性定理可知,系統(tǒng)(5)均方意義下是全局漸近穩(wěn)定的。定理1證明完畢。
4 仿真算例
本文將用一個(gè)仿真算例說明所得結(jié)論的有效性。
例1 考慮具有區(qū)間時(shí)滯和隨機(jī)干擾BAM神經(jīng)網(wǎng)絡(luò)模型系統(tǒng)(5),其參數(shù)為
激活函數(shù)為[fi(x)=12x+1-x-1,i=1,2,]
時(shí)滯為
那么,顯然對任意i和j,有l(wèi)i-lj=1, 即L1=L2=I。同時(shí)
運(yùn)用定理1,通過Matlab求解 (9)式,容易判定系統(tǒng)(5)在均方意義下是全局漸近穩(wěn)定的。所得的部分可行解如下:
[P1=1.1886-0.0918-0.09182.2512, P2=2.9766-0.3644-0.36442.6715,α1=0.6267, α2=1.3079.]
5 結(jié)束語
本文得到了一個(gè)BAM神經(jīng)網(wǎng)絡(luò)的全局漸近穩(wěn)定性的新結(jié)果,該神經(jīng)網(wǎng)絡(luò)是帶有區(qū)間時(shí)滯和隨機(jī)干擾的。與現(xiàn)有大部分文獻(xiàn)相比,該文的穩(wěn)定性判定準(zhǔn)則去掉了導(dǎo)數(shù)上界的限制,既可以適用于快時(shí)滯的情況,也適用于慢時(shí)滯的情況。最后,一個(gè)仿真算例驗(yàn)證了結(jié)論的有效性。
參考文獻(xiàn):
[1] Senan S,Arik S,Liu D.New robust stability results for bidirectional associative memory neural networks with multiple time delays[J].Applied Mathematics and Computation,2012,218(23):11472-11482.
[2] Zhang Z,Liu K,Yang Y.New LMI-based condition on global asymptotic stability concerning BAM neural networks of neutral type[J].Neurocomputing,2012,81:24-32.
[3] Li X,Jia J.Global robust stability analysis for BAM neural networks with time-varying delays[J].Neurocomputing,2013,120:499-503.
[4] Liu B.Global exponential stability for BAM neural networks with time-varying delays in the leakage terms[J].Nonlinear Analysis: Real World Applications,2013,14(1):559-566.
[5] Zhao Z,Liu F,Xie X,et al.Asymptotic stability of bidirectional associative memory neural networks with time-varying delays via delta operator approach[J].Neurocomputing,2013,117:40-46.
[6] Zhang A,Qiu J,She J.Existence and global exponential stability of periodic solution for high-order discrete-time BAM neural networks[J].Neural Networks,2014,50:98-109.
[7] 潘特鐵,時(shí)寶,楊樹杰,等.具時(shí)滯和脈沖的隨機(jī)BAM型Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[J].數(shù)學(xué)物理學(xué)報(bào),2013,33(5):937-950.
[8] Du Y,Zhong S,Zhou N,et al.Exponential stability for stochastic Cohen—Grossberg BAM neural networks with discrete and distributed time-varying delays[J].Neurocomputing,2014,127:144-151.
[9] Rao R,Zhong S,Wang X.Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion[J].Communications in Nonlinear Science and Numerical Simulation,2013,19(1):258—273.
[10] Syed Ali M,Balasubramaniam P.Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays[J].Physics Letters A,2008,372(31):5159-5166.endprint
[4] Liu B.Global exponential stability for BAM neural networks with time-varying delays in the leakage terms[J].Nonlinear Analysis: Real World Applications,2013,14(1):559-566.
[5] Zhao Z,Liu F,Xie X,et al.Asymptotic stability of bidirectional associative memory neural networks with time-varying delays via delta operator approach[J].Neurocomputing,2013,117:40-46.
[6] Zhang A,Qiu J,She J.Existence and global exponential stability of periodic solution for high-order discrete-time BAM neural networks[J].Neural Networks,2014,50:98-109.
[7] 潘特鐵,時(shí)寶,楊樹杰,等.具時(shí)滯和脈沖的隨機(jī)BAM型Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[J].數(shù)學(xué)物理學(xué)報(bào),2013,33(5):937-950.
[8] Du Y,Zhong S,Zhou N,et al.Exponential stability for stochastic Cohen—Grossberg BAM neural networks with discrete and distributed time-varying delays[J].Neurocomputing,2014,127:144-151.
[9] Rao R,Zhong S,Wang X.Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion[J].Communications in Nonlinear Science and Numerical Simulation,2013,19(1):258—273.
[10] Syed Ali M,Balasubramaniam P.Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays[J].Physics Letters A,2008,372(31):5159-5166.endprint
[4] Liu B.Global exponential stability for BAM neural networks with time-varying delays in the leakage terms[J].Nonlinear Analysis: Real World Applications,2013,14(1):559-566.
[5] Zhao Z,Liu F,Xie X,et al.Asymptotic stability of bidirectional associative memory neural networks with time-varying delays via delta operator approach[J].Neurocomputing,2013,117:40-46.
[6] Zhang A,Qiu J,She J.Existence and global exponential stability of periodic solution for high-order discrete-time BAM neural networks[J].Neural Networks,2014,50:98-109.
[7] 潘特鐵,時(shí)寶,楊樹杰,等.具時(shí)滯和脈沖的隨機(jī)BAM型Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[J].數(shù)學(xué)物理學(xué)報(bào),2013,33(5):937-950.
[8] Du Y,Zhong S,Zhou N,et al.Exponential stability for stochastic Cohen—Grossberg BAM neural networks with discrete and distributed time-varying delays[J].Neurocomputing,2014,127:144-151.
[9] Rao R,Zhong S,Wang X.Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion[J].Communications in Nonlinear Science and Numerical Simulation,2013,19(1):258—273.
[10] Syed Ali M,Balasubramaniam P.Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays[J].Physics Letters A,2008,372(31):5159-5166.endprint